scholarly journals Transcriptional elongation by purified RNA polymerase II is blocked at the trans-activation-responsive region of human immunodeficiency virus type 1 in vitro.

1991 ◽  
Vol 65 (9) ◽  
pp. 4910-4918 ◽  
Author(s):  
E Bengal ◽  
Y Aloni
1999 ◽  
Vol 19 (4) ◽  
pp. 2863-2871 ◽  
Author(s):  
Dan Chen ◽  
Qiang Zhou

ABSTRACT Tat stimulates human immunodeficiency virus type 1 (HIV-1) transcriptional elongation by recruitment of the human transcription elongation factor P-TEFb, consisting of Cdk9 and cyclin T1, to the HIV-1 promoter via cooperative binding to the nascent HIV-1 transactivation response RNA element. The Cdk9 kinase activity has been shown to be essential for P-TEFb to hyperphosphorylate the carboxy-terminal domain (CTD) of RNA polymerase II and mediate Tat transactivation. Recent reports have shown that Tat can also interact with the multisubunit transcription factor TFIIH complex and increase the phosphorylation of CTD by the Cdk-activating kinase (CAK) complex associated with the core TFIIH. These observations have led to the proposal that TFIIH and P-TEFb may act sequentially and in a concerted manner to promote phosphorylation of CTD and increase polymerase processivity. Here, we show that under conditions in which a specific and efficient interaction between Tat and P-TEFb is observed, only a weak interaction between Tat and TFIIH that is independent of critical amino acid residues in the Tat transactivation domain can be detected. Furthermore, immunodepletion of CAK under high-salt conditions, which allow CAK to be dissociated from core-TFIIH, has no effect on either basal HIV-1 transcription or Tat activation of polymerase elongation in vitro. Therefore, unlike the P-TEFb kinase activity that is essential for Tat activation of HIV-1 transcriptional elongation, the CAK kinase associated with TFIIH appears to be dispensable for Tat function.


2002 ◽  
Vol 22 (4) ◽  
pp. 1079-1093 ◽  
Author(s):  
Cyril F. Bourgeois ◽  
Young Kyeung Kim ◽  
Mark J. Churcher ◽  
Michelle J. West ◽  
Jonathan Karn

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Tat protein activates transcription elongation by stimulating the Tat-activated kinase (TAK/p-TEFb), a protein kinase composed of CDK9 and its cyclin partner, cyclin T1. CDK9 is able to hyperphosphorylate the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase during elongation. In addition to TAK, the transcription elongation factor Spt5 is required for the efficient activation of transcriptional elongation by Tat. To study the role of Spt5 in HIV transcription in more detail, we have developed a three-stage Tat-dependent transcription assay that permits the isolation of active preinitiation complexes, early-stage elongation complexes, and Tat-activated elongation complexes. Spt5 is recruited in the transcription complex shortly after initiation. After recruitment of Tat during elongation through the transactivation response element RNA, CDK9 is activated and induces hyperphosphorylation of Spt5 in parallel to the hyperphosphorylation of the CTD of RNA polymerase II. However, immunodepletion experiments demonstrate that Spt5 is not required for Tat-dependent activation of the kinase. Chase experiments using the Spt5-depleted extracts demonstrate that Spt5 is not required for early elongation. However, Spt5 plays an important role in late elongation by preventing the premature dissociation of RNA from the transcription complex at terminator sequences and reducing the amount of polymerase pausing at arrest sites, including bent DNA sequences. This novel biochemical function of Spt5 is analogous to the function of NusG, an elongation factor found in Escherichia coli that enhances RNA polymerase stability on templates and shows sequence similarity to Spt5.


2004 ◽  
Vol 24 (12) ◽  
pp. 5094-5105 ◽  
Author(s):  
Jasper H. N. Yik ◽  
Ruichuan Chen ◽  
Andrea C. Pezda ◽  
Craig S. Samford ◽  
Qiang Zhou

ABSTRACT The HEXIM1 protein inhibits the kinase activity of P-TEFb (CDK9/cyclin T) to suppress RNA polymerase II transcriptional elongation in a process that specifically requires the 7SK snRNA, which mediates the interaction of HEXIM1 with P-TEFb. In an attempt to define the sequence requirements for HEXIM1 to interact with 7SK and inactivate P-TEFb, we have identified the first 18 amino acids within the previously described nuclear localization signal (NLS) of HEXIM1 as both necessary and sufficient for binding to 7SK in vivo and in vitro. This 7SK-binding motif was essential for HEXIM1's inhibitory action, as the HEXIM1 mutants with this motif replaced with a foreign NLS failed to interact with 7SK and P-TEFb and hence were unable to inactivate P-TEFb. The 7SK-binding motif alone, however, was not sufficient to inhibit P-TEFb. A region C-terminal to this motif was also required for HEXIM1 to associate with P-TEFb and suppress P-TEFb's kinase and transcriptional activities. The 7SK-binding motif in HEXIM1 contains clusters of positively charged residues reminiscent of the arginine-rich RNA-binding motif found in a wide variety of proteins. Part of it is highly homologous to the TAR RNA-binding motif in the human immunodeficiency virus type 1 (HIV-1) Tat protein, which was able to restore the 7SK-binding ability of a HEXIM1 NLS substitution mutant. We propose that a similar RNA-protein recognition mechanism may exist to regulate the formation of both the Tat-TAR-P-TEFb and the HEXIM1-7SK-P-TEFb ternary complexes, which may help convert the inactive HEXIM1/7SK-bound P-TEFb into an active one for Tat-activated and TAR-dependent HIV-1 transcription.


2017 ◽  
Vol 15 (10) ◽  
pp. 917-933 ◽  
Author(s):  
Jacobo Lopez-Abente ◽  
Adrián Prieto-Sanchez ◽  
Maria-Ángeles Muñoz-Fernandez ◽  
Rafael Correa-Rocha ◽  
Marjorie Pion

2002 ◽  
Vol 76 (3) ◽  
pp. 1015-1024 ◽  
Author(s):  
Barbara Müller ◽  
Tilo Patschinsky ◽  
Hans-Georg Kräusslich

ABSTRACT The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho- 32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.


Sign in / Sign up

Export Citation Format

Share Document