scholarly journals Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule.

1996 ◽  
Vol 16 (8) ◽  
pp. 4003-4013 ◽  
Author(s):  
I S Kim ◽  
S Sinha ◽  
B de Crombrugghe ◽  
S N Maity

The mammalian CCAAT-binding factor (CBF; also called NF-Y and CP1) is a heterotrimeric protein consisting of three subunits, CBF-A, CBF-B, and CBF-C, all of which are required for DNA binding and all of which are present in the CBF-DNA complex. In this study using cross-linking and immunoprecipitation methods, we first established that CBF-B interacts simultaneously with both subunits of the CBF-A-CBF-C heterodimer to form a heterotrimeric CBF molecule. We then performed a mutational analysis of CBF-C to define functional interactions with the other two CBF subunits and with DNA using several in vitro assays and an in vivo yeast two-hybrid system. Our experiments established that the evolutionarily conserved segment of CBF-C, which shows similarities with the histone-fold motif of histone H2A, was necessary for formation of the CBF-DNA complex. The domain of CBF-C which interacts with CBF-A included a large portion of this segment, one that corresponds to the segment of the histone-fold motif in H2A used for interaction with H2B. Two classes of interactions involved in formation of the CBF-A-CBF-C heterodimer were detected; one class, provided by residues in the middle of the interaction domain, was needed for formation of the CBF-A-CBF-C heterodimer. The other, provided by sequences flanking those of the first class was needed for stabilization of the heterodimer. Two separate domains were identified in the conserved segment of CBF-C for interaction with CBF-B; these were located on each side of the CBF-A interaction domain. Since our previous experiments identified a single CBF-B interaction domain in the histone-fold motif of CBF-A, we propose that a tridentate interaction domain in the CBF-A-CBF-C heterodimer interacts with the 21-amino-acid-long subunit interaction domain of CBF-B. Together with our previous mutational analysis of CBF-A (S. Sinha, I.-S. Kim, K.-Y. Sohn, B. de Crombrugghe, and S. N. Maity, Mol. Cell. Biol. 16:328-337, 1996), this study demonstrates that the histone fold-motifs of CBF-A and CBF-C interact with each other to form the CBF-A-CBF-C heterodimer and generate a hybrid surface which then interacts with CBF-B to form the heterotrimeric CBF molecule.

2017 ◽  
Vol 12 (6) ◽  
pp. 209
Author(s):  
Yadi Suryadi ◽  
Tri Puji Priyatno ◽  
I Made Samudra ◽  
Dwi Ningsih Susilowati ◽  
Hermawati Nurzulaika ◽  
...  

The use of chitosan as a coating agent of harvested fruits is an alternative method in controlling anthracnose disease (Colletotrichum sp.). This study aimed to obtain an optimal enzymatic chitosan (EC) that hydrolyzed using chitinase from Burkholderia cepacia isolate E76. The optimal incubation condition to produce EC was 2 h with the yield of 3.52 ± 0.38 g. The degree of deacetylation (DD) chitosan and  EC was 66.91% and 80.91%, respectively. Based on in vitro assays, EC 2% was the most effective in inhibiting the growth of Colletotrichum sp. (94.22%)  than chitosan, while the highest inhibition for chitosan 3% was 55.26%. Moreover, the EC 2% showed the highest inhibition of spore germination (74.12%). The in vivo assay revealed that EC 2% showed the highest inhibition on the fungal growth (88.88%), compared to the other concentrations. On the other hand, the EC 2% and 3% gave similar results on inhibition of Colletotrichum sp.of chili (55.55%). 


1993 ◽  
Vol 13 (12) ◽  
pp. 7864-7873 ◽  
Author(s):  
B K Haarer ◽  
A S Petzold ◽  
S S Brown

We have mutated two regions within the yeast profilin gene in an effort to functionally dissect the roles of actin and phosphatidylinositol 4,5-bisphosphate (PIP2) binding in profilin function. A series of truncations was carried out at the C terminus of profilin, a region that has been implicated in actin binding. Removal of the last three amino acids nearly eliminated the ability of profilin to bind polyproline in vitro but had no dramatic in vivo effects. Thus, the extreme C terminus is implicated in polyproline binding, but the physiological relevance of this interaction is called into question. More extensive truncation, of up to eight amino acids, had in vivo effects of increasing severity and resulted in changes in conformation and expression level of the mutant profilins. However, the ability of these mutants to bind actin in vitro was not eliminated, suggesting that this region cannot be solely responsible for actin binding. We also mutagenized a region of profilin that we hypothesized might be involved in PIP2 binding. Alteration of basic amino acids in this region produced mutant profilins that functioned well in vivo. Many of these mutants, however, were unable to suppress the loss of adenylate cyclase-associated protein (Cap/Srv2p [A. Vojtek, B. Haarer, J. Field, J. Gerst, T. D. Pollard, S. S. Brown, and M. Wigler, Cell 66:497-505, 1991]), indicating that a defect could be demonstrated in vivo. In vitro assays demonstrated that the inability to suppress loss of Cap/Srv2p correlated with a defect in the interaction with actin, independently of whether PIP2 binding was reduced. Since our earlier studies of Acanthamoeba profilins suggested the importance of PIP2 binding for suppression, we conclude that both activities are implicated and that an interplay between PIP2 binding and actin binding may be important for profilin function.


Blood ◽  
2011 ◽  
Vol 117 (9) ◽  
pp. 2618-2624 ◽  
Author(s):  
Lauren I. Richie Ehrlich ◽  
Thomas Serwold ◽  
Irving L. Weissman

Abstract The identity of T-cell progenitors that seed the thymus has remained controversial, largely because many studies differ over whether these progenitors retain myeloid potential. Contradictory reports diverge in their use of various in vitro and in vivo assays. To consolidate these discordant findings, we compared the myeloid potential of 2 putative thymus seeding populations, common lymphoid progenitors (CLPs) and multipotent progenitors (MPPs), and the earliest intrathymic progenitor (DN1), using 2 in vitro assays and in vivo readouts. These assays gave contradictory results: CLP and DN1 displayed surprisingly robust myeloid potential on OP9-DL1 in vitro stromal cocultures but displayed little myeloid potential in vivo, as well as in methylcellulose cultures. MPP, on the other hand, displayed robust myeloid potential in all settings. We conclude that stromal cocultures reveal cryptic, but nonphysiologic, myeloid potentials of lymphoid progenitors, providing an explanation for contradictory findings in the field and underscoring the importance of using in vivo assays for the determination of physiologic lineage potentials.


2004 ◽  
Vol 24 (7) ◽  
pp. 2698-2709 ◽  
Author(s):  
Shaun M. Cowley ◽  
Richard S. Kang ◽  
John V. Frangioni ◽  
Jason J. Yada ◽  
Alec M. DeGrand ◽  
...  

ABSTRACT The recruitment of corepressors by DNA-bound repressors is likely to be a critical rate-limiting step in the transcriptional regulation of many genes. An excellent paradigm for such an interaction is the association of the basic helix-loop-helix zipper protein Mad1 with the corepressor mSin3A. When bound together, the Sin3 interaction domain (SID) of Mad1 forms extensive hydrophobic contacts with the four-helix bundle formed by the paired amphipathic helix 2 (PAH2) domain of mSin3A. Using the costructure to predict the principle residues required for binding, we have carried out an extensive mutational analysis to examine the Mad1 SID-mSin3A PAH2 interaction in vitro and in vivo. Bulky hydrophobic residues in the α1 (I308 and V311) and α2 (L329 and L332) helices of the PAH2 domain are necessary to accommodate the precise arrangement of bulky (L12) and short (A15 and A16) hydrophobic residues in the amphipathic Mad1 SID. We have also used phage display to derive an optimal SID, which shows an essentially identical arrangement of key residues. By manipulating these key residues, we have generated altered-specificity Mad1 SID mutants that bind only to a PAH2 domain with a reciprocal mutation, permitting us to demonstrate for the first time that these domains interact directly in vivo. We have also found that the integrity of the PAH1 domain affects the Mad1 SID-PAH2 interaction. It is conceivable that cross talk between different PAH domains and their binding partners helps to determine the subunit composition and order of assembly of mSin3A complexes.


2006 ◽  
Vol 188 (9) ◽  
pp. 3299-3307 ◽  
Author(s):  
Jinshi Zhao ◽  
John S. Parkinson

ABSTRACT During chemotactic signaling by Escherichia coli, autophosphorylation of the histidine kinase CheA is coupled to chemoreceptor control by the CheW protein, which interacts with the C-terminal P5 domain of CheA. To identify P5 determinants important for CheW binding and receptor coupling control, we isolated and characterized a series of P5 missense mutants. The mutants fell into four phenotypic groups on the basis of in vivo behavioral and protein stability tests and in vitro assays with purified mutant proteins. Group 1 mutants exhibited autophosphorylation and receptor-coupling defects, and their CheA proteins were subject to relatively rapid degradation in vivo. Group 1 mutations were located at hydrophobic residues in P5 subdomain 2 and most likely caused folding defects. Group 2 mutants made stable CheA proteins with normal autophosphorylation ability but with defects in CheW binding and in receptor-mediated activation of CheA autophosphorylation. Their mutations affected residues in P5 subdomain 1 near the interface with the CheA dimerization (P3) and ATP-binding (P4) domains. Mutant proteins of group 3 were normal in all tests yet could not support chemotaxis, suggesting that P5 has one or more important but still unknown signaling functions. Group 4 mutant proteins were specifically defective in receptor-mediated deactivation control. The group 4 mutations were located in P5 subdomain 1 at the P3/P3′ interface. We conclude that P5 subdomain 1 is important for CheW binding and for receptor coupling control and that these processes may require substantial motions of the P5 domain relative to the neighboring P3 and P4 domains of CheA.


1993 ◽  
Vol 13 (12) ◽  
pp. 7864-7873
Author(s):  
B K Haarer ◽  
A S Petzold ◽  
S S Brown

We have mutated two regions within the yeast profilin gene in an effort to functionally dissect the roles of actin and phosphatidylinositol 4,5-bisphosphate (PIP2) binding in profilin function. A series of truncations was carried out at the C terminus of profilin, a region that has been implicated in actin binding. Removal of the last three amino acids nearly eliminated the ability of profilin to bind polyproline in vitro but had no dramatic in vivo effects. Thus, the extreme C terminus is implicated in polyproline binding, but the physiological relevance of this interaction is called into question. More extensive truncation, of up to eight amino acids, had in vivo effects of increasing severity and resulted in changes in conformation and expression level of the mutant profilins. However, the ability of these mutants to bind actin in vitro was not eliminated, suggesting that this region cannot be solely responsible for actin binding. We also mutagenized a region of profilin that we hypothesized might be involved in PIP2 binding. Alteration of basic amino acids in this region produced mutant profilins that functioned well in vivo. Many of these mutants, however, were unable to suppress the loss of adenylate cyclase-associated protein (Cap/Srv2p [A. Vojtek, B. Haarer, J. Field, J. Gerst, T. D. Pollard, S. S. Brown, and M. Wigler, Cell 66:497-505, 1991]), indicating that a defect could be demonstrated in vivo. In vitro assays demonstrated that the inability to suppress loss of Cap/Srv2p correlated with a defect in the interaction with actin, independently of whether PIP2 binding was reduced. Since our earlier studies of Acanthamoeba profilins suggested the importance of PIP2 binding for suppression, we conclude that both activities are implicated and that an interplay between PIP2 binding and actin binding may be important for profilin function.


2017 ◽  
Author(s):  
Wenjuan Zhang ◽  
Natalya Lukoynova ◽  
Shomon Miah ◽  
Cara K Vaughan

SummaryThe Centromere Binding Factor 3 (CBF3) complex binds the third Centromere DNA Element in organisms with point centromeres, such as S. cerevisiae. It is the only essential centromere binding complex as it facilitates genetic specification of point centromeres. It is therefore the most fundamental complex of the kinetochore in these organisms and its association with centromere DNA allows association of all other kinetochore components. We have determined the atomic structure of the core complex of CBF3, comprising 3 of its 4 components, using cryo-EM. The architecture of the complex is 'U'-shaped, with a deep, strongly basic channel that is narrow at one end and wide at the other. Combining our structure and in vitro assays, we present a model for its association with centromere DNA.


1996 ◽  
Vol 16 (1) ◽  
pp. 328-337 ◽  
Author(s):  
S Sinha ◽  
I S Kim ◽  
K Y Sohn ◽  
B de Crombrugghe ◽  
S N Maity

The mammalian CCAAT-binding factor CBF (also called NF-Y or CP1) consists of three subunits, CBF-A, CBF-B, and CBF-C, all of which are required for DNA binding and present in the CBF-DNA complex. In this study we first established the stoichiometries of the CBF subunits, both in the CBF molecule and in the CBF-DNA complex, and showed that one molecule of each subunit is present in the complex. To begin to understand the interactions between the CBF subunits and DNA, we performed a mutational analysis of the CBF-A subunit. This analysis identified three classes of mutations in the segment of CBF-A that is conserved in Saccharomyces cerevisiae and mammals. Analysis of the first class of mutants revealed that a major part of the conserved segment was essential for interactions with CBF-C to form a heterodimeric CBF-A/CBF-C complex. The second class of mutants identified a segment of CBF-A that is necessary for interactions between the CBF-A/CBF-C heterodimer and CBF-B to form a CBF heterotrimer. The third class defined a domain of CBF-A involved in binding the CBF heterotrimer to DNA. The second and third classes of mutants acted as dominant negative mutants inhibiting the formation of a complex between the wild-type CBF subunits and DNA. The segment of CBF-A necessary for DNA binding showed sequence homology to a segment of CBF-C. Interestingly, these sequences in CBF-A and CBF-C were also homologous to the sequences in the histone-fold motifs of histones H2B and H2A, respectively, and to the archaebacterial histone-like protein HMf-2. We discuss the functional domains of CBF-A and the properties of CBF in light of these sequence homologies and propose that an ancient histone-like motif in two CBF subunits controls the formation of a heterodimer between these subunits and the assembly of a sequence-specific DNA-protein complex.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1979 ◽  
Vol 41 (03) ◽  
pp. 576-582
Author(s):  
A R Pomeroy

SummaryThe limitations of currently used in vitro assays of heparin have demonstrated the need for an in vivo method suitable for routine use.The in vivo method which is described in this paper uses, for each heparin preparation, four groups of five mice which are injected intravenously with heparin according to a “2 and 2 dose assay” procedure. The method is relatively rapid, requiring 3 to 4 hours to test five heparin preparations against a standard preparation of heparin. Levels of accuracy and precision acceptable for the requirements of the British Pharmacopoeia are obtained by combining the results of 3 to 4 assays of a heparin preparation.The similarity of results obtained the in vivo method and the in vitro method of the British Pharmacopoeia for heparin preparations of lung and mucosal origin validates this in vivo method and, conversely, demonstrates that the in vitro method of the British Pharmacopoeia gives a reliable estimation of the in vivo activity of heparin.


Sign in / Sign up

Export Citation Format

Share Document