scholarly journals Genetic Analysis of Mouse Embryonic Stem Cells Bearing Msh3 and Msh2 Single and Compound Mutations

2000 ◽  
Vol 20 (1) ◽  
pp. 149-157 ◽  
Author(s):  
Alejandro Abuin ◽  
HeJu Zhang ◽  
Allan Bradley

ABSTRACT We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at theMsh3, Msh2, and both Msh3 andMsh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for theMsh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient andMsh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.

2001 ◽  
Vol 21 (8) ◽  
pp. 2671-2682 ◽  
Author(s):  
Beth Elliott ◽  
Maria Jasin

ABSTRACT Chromosomal double-strand breaks (DSBs) stimulate homologous recombination by several orders of magnitude in mammalian cells, including murine embryonic stem (ES) cells, but the efficiency of recombination decreases as the heterology between the repair substrates increases (B. Elliott, C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin, Mol. Cell. Biol. 18:93–101, 1998). We have now examined homologous recombination in mismatch repair (MMR)-defective ES cells to investigate both the frequency of recombination and the outcome of events. Using cells with a targeted mutation in the msh2 gene, we found that the barrier to recombination between diverged substrates is relaxed for both gene targeting and intrachromosomal recombination. Thus, substrates with 1.5% divergence are 10-fold more likely to undergo DSB-promoted recombination in Msh2 −/− cells than in wild-type cells. Although mutant cells can repair DSBs efficiently, examination of gene conversion tracts in recombinants demonstrates that they cannot efficiently correct mismatched heteroduplex DNA (hDNA) that is formed adjacent to the DSB. As a result, >20-fold more of the recombinants derived from mutant cells have uncorrected tracts compared with recombinants from wild-type cells. The results indicate that gene conversion repair of DSBs in mammalian cells frequently involves mismatch correction of hDNA rather than double-strand gap formation. In cells with MMR defects, therefore, aberrant recombinational repair may be an additional mechanism that contributes to genomic instability and possibly tumorigenesis.


Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 969-981 ◽  
Author(s):  
F.L. Conlon ◽  
K.S. Barth ◽  
E.J. Robertson

A genetic screen of transgenic mouse strains, carrying multiple copies of an MPSV neo retroviral vector, has led to the identification of a recessive embryonic lethal mutation, termed 413.d. This mutation is associated with a single proviral insertion and when homozygous, results in the failure of the early postimplantation embryo at the gastrulation stage of development. Embryonic stem cell lines (ES cells) were derived from 413.d intercross embryos. Genotyping, with respect to the 413.d integration site, identified wild-type, heterozygous and homozygous ES cell lines. The differentiation abilities and developmental potential of the ES cell lines were assessed using a number of in vitro and in vivo assays. Results indicate that the ES cell lines, regardless of genotype, are pluripotent and can give rise to tissue and cell types derived from all three germ layers. Furthermore, analysis of midgestation conceptuses (10.5 p.c.) and adult chimeras generated by injecting mutant ES cells into host blastocysts, provides strong evidence that the mutant cells can contribute to all extraembryonic tissues and somatic tissues, as well as to functional germ cells. These results indicate that the homozygous mutant cells can be effectively ‘rescued’ by the presence of wild-type cells in a carrier embryo.


1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


2008 ◽  
Vol 20 (1) ◽  
pp. 224
Author(s):  
J. Okahara-Narita ◽  
J. Yamasaki ◽  
C. Iwatani ◽  
H. Tsuchiya ◽  
K. Wakimoto ◽  
...  

The establishment of most embryonic stem (ES) cell lines requires the destruction of embryos. Some ES cell lines in mice and humans are currently derived from a single blastomere, so that remaining blastomeres can still develop into fetuses. However, the procedures currently in use for establishing these lines are very complicated, and other ES cell lines from the same species are needed (Chung et al. 2006 Nature 439, 216–219; Klimanskaya et al. 2006 Nature 444, 481–485). The objective of this study was to devise a method simpler than those previously described for establishing ES cell lines from a single blastomere in the cynomolgus monkey. Controlled ovarian stimulation and oocyte recovery have been described previously by Torii et al. (2000 Primates 41, 39–47). Cumulus-free mature oocytes were fertilized by intracytoplasmic sperm injection (ICSI), and then cultured at 38�C in 5% CO2, 5% O2 for 2 days. The zona pellucida of 4- to 5-cell-stage embryos was disrupted using acidic Tyrode's solution, and individual blastomeres were separated from the denuded embryos using trypsin. These blastomeres were cultured on mitomycin-C-treated mouse embryonic fibroblasts and ES medium containing adrenocorticotropic hormone (ACTH) (Ogawa et al. 2004 Genes to Cells 9, 471–477). After the formation of initial outgrowths, half of the medium was changed every other day until the outgrowths reached approximately 100 cells. Passage of putative monkey ES cells was performed by mechanical dispersion of the colonies and transfer to fresh feeders every 3–4 days until there were enough cells for enzymatic dispersion. One stable ES cell line was obtained from two 4- or 5-cell-stage embryos using ES medium containing ACTH. The morphology of this ES cell colony was consistent with the monkey ES cell colony previous described by Suemori et al. (2001 Dev. Dynamics 222, 273–279). The ES cell line was passaged more than 17 times, and the morphology of the ES cell colony did not differ between the first and seventeenth passages. The ES cells showed normal karyotype and retained pluripotency markers for primate ES cells including octamer-binding protein 4 (Oct-4), stage-specific embryonic antigen (SSEA)-4, tumor-rejection antigen (TRA)-1-60, and TRA-1-81. We are presently confirming whether this ES cell line possesses potencies to differentiate in all three embryonic germ layers using both an in vitro assay and teratoma formation. Here we showed that cynomolgus monkey ES cells can be derived from a single blastomere, without co-culturing another ES cell line, as has been done in previous studies on mice and humans. This method allows the establishment of ES cell lines from a single blastomere, leaving the other blastomeres available for embryo transfer. Thus, the method described here is simpler than previously described methods and alleviates some ethical concerns.


2008 ◽  
Vol 20 (1) ◽  
pp. 223 ◽  
Author(s):  
T. Lonergan ◽  
A. Harvey ◽  
J. Zhao ◽  
B. Bavister ◽  
C. Brenner

The inner cell mass (ICM) of the blastocyst develops into the fetus after uterine implantation. Prior to implantation, ICM cells synthesize ATP by glycolytic reactions. We now report that cells of the ICM in 3.5-day-old mouse embryos have too few mitochondria to be visualized with either Mitotracker red (active mitochondria) or an antibody against complex I of OXPHOS. By comparison, all of the surrounding trophectoderm cells reveal numerous mitochondria throughout their cytoplasm. It has largely been assumed that embryonic stem (ES) stem cells derived from the ICM also have few mitochondria, and that replication of mitochondria in the ES cells does not begin until they commence differentiation. We further report that mouse E14 ES cells and monkey ORMES 7 ES cells have considerable numbers of active mitochondria when cultured under standard conditions, i.e., 5% CO2 in air. Both the mouse E14 and monkey ES cell lines expressed two markers of undifferentiated cells, Oct-4 and SSEA-4, and monkey ES cells expressed the undifferentiated cell marker Nanog; however, Oct-4 is nonspecific in monkey ES cells because trophectoderm also expresses this marker, unlike in mice. Ninety-nine percent of the E14 cells examined, and 100% of the ORMES 7 cells, have a visible mitochondrial mass when stained with either Mitoracker red or with an antibody against OXPHOS complex I. The ATP content in the mouse E14 cells (4.13 pmoles ATP/cell) is not significantly different (P = 0.76) from that in a mouse fibroblast control (3.75 pmoles ATP/cell). Cells of the monkey ORMES 7 cell line had 61% of the ATP/cell content (7.55 pmoles ATP/cell) compared to the monkey fibroblast control (12.38 pmoles ATP/cell). Both cell lines expressed two proteins believed to indicate competence of mitochondria to replicate: PolG, the polymerase used to replicate the mitochondrial genome, and TFAM, a nuclear-encoded transcription factor reported to regulate several aspects of mitochondrial function. Both proteins were found to co-localize in the mitochondria. We conclude that when the ICMs are isolated from blastocysts and used to establish these two ES cell lines in cell culture, mitochondrial biosynthesis is activated.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5267-5267
Author(s):  
Zwi N. Berneman ◽  
Jeremy P. Brown ◽  
Sjaak Van der Sar ◽  
Dave Van den Plas ◽  
Lena Van den Eeden ◽  
...  

Abstract BACKGROUND: Development of efficient non-viral gene transfer technologies for embryonic stem (ES) cells is urgently needed for various existing and new ES cell-based research strategies. In this study we investigated mRNA electroporation as a tool for short-term gene transfer in both mouse and human ES cells. METHODS: Culture and mRNA electroporation conditions for feeder-free cultured mouse and human ES cells were optimized on three mouse ES cell lines (E14, R1 and HM-1) and one human ES cell line (H9). After electroporation with EGFP mRNA, transfected ES cell populations were analyzed by FACS for EGFP expression, viability and phenotype. Also, stably-transfected mouse ES cell lines containing Lox-P or FRT-flanked reporter genes were electroporated with mRNA encoding Cre- or FLPe-recombinase proteins. Monitoring recombination efficiency was done based on the appearance and/or disappearance of fluorescent reporter genes, as determined by FACS analysis. ES cells that underwent recombination were further analyzed for potential to differentiate towards the neural lineage and differentiated cells were analyzed by FACS for expression of neural markers. RESULTS: (A) Electroporation of EGFP mRNA in mouse ES cells resulted in high level transgene expression (>90% EGFP positive cells) combined with low electroporation-induced cell mortality (>90% viable cells). Moreover, the electroporation procedure did not influence ES cell phenotype and further cell culture of undifferentiated ES cell populations. Electroporation of mRNA encoding Cre- or FLPe-recombinase proteins in stably-transfected mouse ES cell lines containing LoxP- or FRT-flanked reporter genes resulted in a recombination efficiency of respectively 75% and 90%. Moreover, these recombination events did not have influence on ES cell phenotype, viability, growth potential, and their ability to differentiate towards neural cell types upon retinoic acid stimulation. (B) Although human ES cells are much more sensitive as compared to mouse ES cells, we were able to develop improved culture and electroporation conditions for feeder-free maintained H9 human ES cells, which resulted in high level transgene expression (>90% EGFP+ cells) combined with high cell viability (>90% viable cells) after EGFP mRNA electroporation. CONCLUSIONS: RNA electroporation is a highly efficient method for short-term genetic loading of both mouse and human ES cells. Ongoing research now focuses on either short-term (via direct mRNA electroporation) or sustained (via mRNA-based FLPe-recombination) expression of transcription factors in ES cells and their influence on cell-fate within in vitro cultured embryoid bodies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 877-877
Author(s):  
Tracie A. Goldberg ◽  
Sharon Singh ◽  
Adrianna Henson ◽  
Abdallah Nihrane ◽  
Jeffrey Michael Lipton ◽  
...  

Abstract Abstract 877 Background: Diamond Blackfan anemia (DBA), a rare inherited bone marrow failure syndrome, is characterized mainly by erythroid hypoplasia but is also associated with congenital anomalies, short stature and cancer predisposition. DBA has been shown to result from haploinsufficiency of ribosomal proteins (RPS17, RPS19, RPS24, RPL5, RPL11, RPL35a), which renders erythroid precursors highly sensitive to death by apoptosis. The ontogeny and basis of the hematopoietic defect are unclear. The typical presentation of anemia occurs at 2–3 months of age, although there are rare cases of hydrops fetalis. Marked phenotypic variations exist among members of the same family and also between subsets of patients with different mutations. Methods: We studied in vitro hematopoietic differentiation of two murine embryonic stem (ES) cell lines: YHC074, Rps19 mutant with the pGT0Lxf gene trap vector inserted in intron 3 of Rps19, and D050B12, Rpl5 mutant with the FlipRosaβgeo gene trap vector inserted in intron 3 of Rpl5. Wild-type parental cell lines were used as controls. For primary differentiation and generation of embryoid bodies (EBs), ES cells were cultured in serum-supplemented methylcellulose medium containing stem cell factor (SCF). After 7 days, the cultures were fed with medium containing SCF, interleukin-3 (IL-3), IL-6 and erythropoietin (epo). EBs were scored on day 6 for total quantity, then again on day 12 for hematopoietic percentage. For secondary differentiation into definitive hematopoietic colonies, day 10 EBs were disrupted, and individual cells were suspended in serum-supplemented methylcellulose medium containing SCF, IL-3, Il-6 and epo. Definitive hematopoietic colonies were counted on day 10. Primitive erythropoiesis differentiation assays were performed by disruption of day 4 EBs, followed by suspension of cells in methylcellulose medium containing plasma-derived serum and epo. Primitive erythropoiesis colonies were counted on day 7. Results: We confirmed haploinsufficient expression (∼50% wild type) of Rps19 in YHC074 and Rpl5 protein in D050B12 by Western blot analysis. By polysome analysis, we found a selective reduction in the 40S subunit peak in the Rps19 mutant cell line and in the 60S subunit peak in the Rpl5 mutant cell line. Both types of mutants produced a significantly decreased number of EBs, particularly hematopoietic EBs, compared to parental cell lines. EB size was not compromised in the Rps19 mutant cell line, while Rpl5 mutant ES cells produced significantly smaller EBs, compared to its parental cells. Upon differentiation of cells to definitive hematopoietic colonies, both Rps19 and Rpl5 mutants showed a similar reduction in the erythroid (CFU-E and BFU-E) to myeloid (CFU-GM) colony formation ratio. Primitive erythropoiesis was conserved in the Rps19 mutant (Figure 1. 1, top panel). By contrast, the Rpl5 mutant demonstrated a severe primitive erythropoiesis defect (Figure 1. 1, bottom panel). For confirmation of these results in an isogenic background, we stably transfected YHC074 ES cells with a vector expressing wild-type Rps19 cDNA and the puromycin resistance gene. Several resistant clones expressed Rps19 at the wild-type level. Upon differentiation of a chosen clone, we demonstrated correction of the EB defect and the definitive erythropoiesis defect, suggesting that the hematopoietic differentiation defects seen are directly related to levels of Rps19 protein. We are currently working on correction of the D050B12 ES cells in a similar manner. Conclusion: Murine ES cell lines with Rps19 and Rpl5 mutations exhibit ribosomal protein haploinsufficiency, demonstrate respective ribosome assembly defects, and recapitulate the major DBA hematopoietic differentiation defect. In addition, a unique defect in primitive erythropoiesis in the Rpl5 mutant ES cell line suggests that the Rpl5 mutation in this mouse strain affects early-stage embryogenesis, a finding which may offer insight into the ontogeny of DBA hematopoiesis and may offer an explanation for phenotypic variations seen in patients (such as hydrops fetalis). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 728-728 ◽  
Author(s):  
Tracie A. Goldberg ◽  
Sharon Singh ◽  
Jonathan Solaimanzadeh ◽  
Jeffrey Goldstein ◽  
Jeffrey Michael Lipton ◽  
...  

Abstract Abstract 728 Background: Diamond Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome characterized by red blood cell hypoplasia, congenital anomalies and cancer predisposition. The disease has been shown to result from haploinsufficiency of large or small ribosomal subunit proteins. The p53 pathway, known to be activated by abortive ribosome assembly, may play a role in the pathogenesis of DBA. Previously, we described murine embryonic stem (ES) cell models of DBA and reported hematopoietic and erythroid defects common to Rps19- and Rpl5-deficient cell lines, as well as a primitive erythropoiesis defect unique to an Rpl5-deficient cell line [Blood 116(21), 877, 2010]. Methods: We studied the effects of p53 knockdown on hematopoiesis in our Rps19- and Rpl5-mutant murine ES cell lines created by gene trap technology. Small interfering RNA (siRNA) targeting p53 was transfected into mutant cell lines at the ES cell stage. A non-targeting siRNA served as a negative control. After 24 hours, cells were plated into methylcellulose medium with fetal bovine serum and stem cell factor (SCF) to generate embryoid bodies (EBs). On day 7, EBs were fed with medium containing SCF, interleukin-3 (IL-3), IL-6 and erythropoietin (epo). EBs were scored on day 12 for total quantity and hematopoietic percentage. For secondary differentiation into primitive erythroid colonies, day 5 EBs were disrupted, and individual cells were suspended in a methylcellulose medium containing fetal bovine plasma-derived serum and epo. Primitive erythroid colonies were counted on day 7 of culture. Definitive hematopoiesis assays were performed by disruption of day 7 EBs, followed by suspension of cells in methylcellulose medium containing SCF, IL-3, IL-6 and epo. Definitive hematopoietic colonies were counted on day 10. In an independent set of experiments, we created an isogenic pair of wild-type and mutant DBA ES cells by electroporation of another Rps19- mutant line with a plasmid vector expressing wild-type Rps19 cDNA (wild-type) or an empty vector (mutant). Results: By immunoblot assays, we detected an increased amount of p53 protein in our Rps19-and Rpl5- mutant cell lines. Following p53 siRNA transfection, we confirmed 82–95% reduction in p53 expression by quantitative PCR, whereas ES cells transfected with non-targeting siRNA did not alter p53 expression. For both Rps19- and Rpl5- mutants, previously shown to have EB formation defects in comparison to parental controls, p53 knockdown significantly improved EB formation, especially hematopoietic-type EBs, compared to mutants treated with non-targeting siRNA. In addition, p53 knockdown in both mutants reversed the definitive hematopoiesis defect by increasing the ratio of erythroid colony to myeloid colony formation. Furthermore, p53 siRNA transfection of the Rpl5- mutant rescued the primitive erythropoiesis defect previously shown by us. To further explore the mechanistic basis of our findings, we additionally tested the effects of Rpl11 knockdown in our DBA models. The presence of free RPL11 secondary to abortive ribosome assembly has been hypothesized to be responsible for increased p53 in DBA by binding to and inhibiting the p53 inhibitor HDM2 (Mdm2 in mice). Transfection of Rpl11 siRNA into both Rps19- and Rpl5-mutant cell lines at the ES cell stage led to a marked reduction in EB formation, compared to cells transfected with non-targeting siRNA. Finally, we also extended our analysis to an isogenic pair of Rps19- wild-type and mutant cells. In the mutant line, we confirmed a 5–8 fold rescue of EB formation with siRNA targeting p53 when compared to the non-targeting siRNA. In order to clarify the role of two major downstream effectors of p53, siRNA targeting either Bax or p21 was transfected into the mutant cell line. Surprisingly, neither siRNA was able to rescue the EB formation defect of the mutant cells. Conclusions: (1) Knockdown of p53 markedly improves erythroid defects of Rps19- and Rpl5-deficient murine ES cell models of DBA, while inhibition of the upstream target Rpl11 causes significant toxicity to cells already haploinsufficient for Rps19 or Rpl5. (2) Knockdown of either Bax or p21 does not recapitulate knockdown of p53, suggesting that neither plays a significant individual role in downstream signaling from p53 in this model. (3) Further exploration of the p53 pathway may provide insights into the pathogenesis of DBA and identify new targets for therapy. Disclosures: No relevant conflicts of interest to declare.


1992 ◽  
Vol 12 (5) ◽  
pp. 2391-2395 ◽  
Author(s):  
R M Mortensen ◽  
D A Conner ◽  
S Chao ◽  
A A Geisterfer-Lowrance ◽  
J G Seidman

We have developed a simple method for producing embryonic stem (ES) cell lines whereby both alleles have been inactivated by homologous recombination and which requires a single targeting construct. Four different ES cell lines were created that were heterozygous for genes encoding two guanine nucleotide-binding protein subunits, alpha i2 and alpha i3, T-cell receptor alpha, and beta-cardiac myosin heavy chain. When these heterozygous cells were grown in high concentrations of G418, many of the surviving cells were homozygous for the targeted allele and contained two copies of the G418 resistance gene. This scheme provides an easy method for obtaining homozygous mutationally altered cells, i.e., double knockouts, and should be generally applicable to other genes and to cell lines other than ES cells. This method should also enable the production of cell lines in which more than one gene have had both alleles disrupted. These mutant cells should provide useful tools for defining the role of particular genes in cell culture.


1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758 ◽  
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


Sign in / Sign up

Export Citation Format

Share Document