scholarly journals Pre-mRNA Splicing by the EssentialDrosophila Protein B52: Tissue and Target Specificity

2000 ◽  
Vol 20 (1) ◽  
pp. 181-186 ◽  
Author(s):  
Bryan E. Hoffman ◽  
John T. Lis

ABSTRACT B52, an essential SR protein of Drosophila melanogaster, stimulates pre-mRNA splicing in splicing-deficient mammalian S100 extracts. Surprisingly, mutant larvae depleted of B52 were found to be capable of splicing at least several pre-mRNAs tested (H. Z. Ring and J. T. Lis, Mol. Cell. Biol. 14:7499–7506, 1994). In a homologous in vitro system, we demonstrated that B52 complements a Drosophila S100 extract to allow splicing of a Drosophila fushi tarazu(ftz) mini-pre-mRNA. Moreover, Kc cell nuclear extracts that were immunodepleted of B52 lost their ability to splice thisftz pre-mRNA. In contrast, splicing of this sameftz pre-mRNA occurred in whole larvae homozygous for theB52 deletion. Other SR protein family members isolated from these larvae could substitute for B52 splicing activity in vitro. We also observed that SR proteins are expressed variably in different larval tissues. B52 is the predominant SR protein in specific tissues, including the brain. Tissues in which B52 is normally the major SR protein, such as larval brain tissue, failed to produce ftzmRNA in the B52 deletion line. These observations support a model in which the lethality of the B52 deletion strain is a consequence of splicing defects in tissues in which B52 is normally the major SR protein.

1985 ◽  
Vol 5 (12) ◽  
pp. 3331-3336
Author(s):  
K Y Song ◽  
L Chekuri ◽  
S Rauth ◽  
S Ehrlich ◽  
R Kucherlapati

We examined the effect of double-strand breaks on homologous recombination between two plasmids in human cells and in nuclear extracts prepared from human and rodent cells. Two pSV2neo plasmids containing nonreverting, nonoverlapping deletions were cotransfected into cells or incubated with cell extracts. Generation of intact neo genes was monitored by the ability of the DNA to confer G418r to cells or Neor to bacteria. We show that double-strand breaks at the sites of the deletions enhanced recombination frequency, whereas breaks outside the neo gene had no effect. Examination of the plasmids obtained from experiments involving the cell extracts revealed that gene conversion events play an important role in the generation of plasmids containing intact neo genes. Studies with plasmids carrying multiple polymorphic genetic markers revealed that markers located within 1,000 base pairs could be readily coconverted. The frequency of coconversion decreased with increasing distance between the markers. The plasmids we constructed along with the in vitro system should permit a detailed analysis of homologous recombinational events mediated by mammalian enzymes.


Development ◽  
1975 ◽  
Vol 34 (2) ◽  
pp. 485-495
Author(s):  
L. Brinkley ◽  
G. Basehoar ◽  
A. Branch ◽  
J. Avery

An in vitro system was devised which supports palate development in partially dissected embryonic mouse heads. The heads were suspended in the culture chamber so that they were not held in a fixed orientation and were constantly surrounded with a fluid medium. Under these circumstances the developing palate must effect closure without the aid of gravitational forces. The culture medium was constantly circulated, gassed with 95% O2, 5% CO2 using hollow fiber gas permeation devices, and kept at 34°C. Swiss-Webster mouse embryos of 12 days 12–18 h (ca. 48 h prior to expected in vivo closure) or 13 days 8–14 h (ca. 24 h prior to closure) were used to test the ability of the system to support palatal development. Embryonic heads were dissected in one of two ways before culture: brain and tongue removed, or brain, tongue and mandible removed. After 24 h in culture, preparations of either age with only the brain and tongue removed had made substantially greater progress than their counterparts with the brain, tongue and mandible removed. With only the brain and tongue removed, the palatal shelves were contacting, adhered or fused in 67 % of the older embryos, whereas most of the embryos of the same age cultured with the brain, tongue and mandible removed had shelves that were not fully elevated and still separated by a moderate gap. Thus for maximal progress in the present system, the oral cavity must be intact except for the tongue.


1983 ◽  
Vol 96 (6) ◽  
pp. 1751-1755 ◽  
Author(s):  
E D Wieben ◽  
S J Madore ◽  
T Pederson

The small nuclear RNAs are known to be complexed with proteins in the cell (snRNP). To learn more about these proteins, we developed an in vitro system for studying their interactions with individual small nuclear RNA species. Translation of HeLa cell poly(A)+ mRNA in an exogenous message-dependent reticulocyte lysate results in the synthesis of snRNP proteins. Addition of human small nuclear RNA U1 to the translation products leads to the formation of a U1 RNA-protein complex that is recognized by a human autoimmune antibody specific for U1 snRNP. This antibody does not react with free U1 RNA. Moreover, addition of a 10- to 20-fold molar excess of transfer RNA instead of U1 RNA does not lead to the formation of an antibody-recognized RNP. The proteins forming the specific complex with U1 RNA correspond to the A, B1, and B2 species (32,000, 27,000, and 26,000 mol wt, respectively) observed in previous studies with U1 snRNP obtained by antibody-precipitation of nuclear extracts. The availability of this in vitro system now permits, for the first time, direct analysis of snRNA-protein binding interactions and, in addition, provides useful information on the mRNAs for snRNP proteins.


1989 ◽  
Vol 9 (12) ◽  
pp. 5273-5280 ◽  
Author(s):  
G C Conway ◽  
A R Krainer ◽  
D L Spector ◽  
R J Roberts

Pre-mRNA splicing occurs in a macromolecular complex called the spliceosome. Efforts to isolate spliceosomes from in vitro splicing reactions have been hampered by the presence of endogenous complexes that copurify with de novo spliceosomes formed on added pre-mRNA. We have found that removal of these large complexes from nuclear extracts prevents the splicing of exogenously added pre-mRNA. We therefore examined these complexes for the presence of splicing factors and proteins known or thought to be involved in RNA splicing. These fast-sedimenting structures were found to contain multiple small nuclear ribonucleoproteins (snRNPs) and a fragmented heterogeneous nuclear ribonucleoprotein complex. At least two splicing factors other than the snRNPs were also associated with these large structures. Upon incubation with ATP, these splicing factors as well as U1 and U2 snRNPs were released from these complexes. The presence of multiple splicing factors suggests that these complexes may be endogenous spliceosomes released from nuclei during preparation of splicing extracts. The removal of these structures from extracts that had been preincubated with ATP yielded a splicing extract devoid of large structures. This extract should prove useful in the fractionation of splicing factors and the isolation of native spliceosomes formed on exogenously added pre-mRNA.


1999 ◽  
Vol 112 (2) ◽  
pp. 157-168 ◽  
Author(s):  
L. Trinkle-Mulcahy ◽  
P. Ajuh ◽  
A. Prescott ◽  
F. Claverie-Martin ◽  
S. Cohen ◽  
...  

Protein phosphatase-1 (PP1) is complexed to many proteins that target it to particular subcellular locations and regulate its activity. Here, we show that ‘nuclear inhibitor of PP1’ (NIPP1), a major nuclear PP1-binding protein, shows a speckled nucleoplasmic distribution where it is colocalised with pre-mRNA splicing factors. One of these factors (Sm) is also shown to be complexed to NIPP1 in nuclear extracts. Immunodepletion of NIPP1 from nuclear extracts, or addition of a ‘dominant negative’ mutant lacking a functional PP1 binding site, greatly reduces pre-mRNA splicing activity in vitro. These findings implicate the NIPP1-PP1 complex in the control of pre-mRNA splicing.


1991 ◽  
Vol 11 (1) ◽  
pp. 445-457
Author(s):  
R Jessberger ◽  
P Berg

We have designed an in vitro system using mammalian nuclear extracts, or fractions derived from them, that can restore the sequences missing at double-strand breaks (gaps) or in deletions. The recombination substrates consist of (i) recipient DNA, pSV2neo with gaps or deletions ranging from 70 to 390 bp in the neo sequence, and (ii) donor DNAs with either complete homology to the recipient (pSV2neo) or plasmids whose homology with pSV2neo is limited to a 1.0- to 1.3-kbp neo segment spanning the gaps or deletions. Incubation of these substrates with various enzyme fractions results in repair of the recipient DNA's disrupted neo gene. The recombinational repair was monitored by transforming recA Escherichia coli to kanamycin resistance and by a new assay which measures the extent of DNA strand transfer from the donor substrate to the recipient DNA. Thus, either streptavidin- or antidigoxigenin-tagged beads are used to separate the biotinylated or digoxigeninylated recipient DNA, respectively, after incubation with the isotopically labeled donor DNA. In contrast to the transfection assay, the DNA strand transfer measurements are direct, quantitative, rapid, and easy, and they provide starting material for the characterization of the recombination products and intermediates. Accordingly, DNA bound to beads serves as a suitable template for the polymerase chain reaction. With appropriate pairs of oligonucleotide primers, we have confirmed that both gaps and deletions are fully repaired, that deletions can be transferred from the recipient DNA to the donor's intact neo sequence, and that cointegrant molecules containing donor and recipient DNA sequences are formed.


2001 ◽  
Vol 21 (22) ◽  
pp. 7673-7681 ◽  
Author(s):  
Sabine Guth ◽  
Thomas O/. Tange ◽  
Esther Kellenberger ◽  
Juan Valcárcel

ABSTRACT The splicing factor U2AF is required for the recruitment of U2 small nuclear RNP to pre-mRNAs in higher eukaryotes. The 65-kDa subunit of U2AF (U2AF65) binds to the polypyrimidine (Py) tract preceding the 3′ splice site, while the 35-kDa subunit (U2AF35) contacts the conserved AG dinucleotide at the 3′ end of the intron. It has been shown that the interaction between U2AF35 and the 3′ splice site AG can stabilize U2AF65 binding to weak Py tracts characteristic of so-called AG-dependent pre-mRNAs. U2AF35 has also been implicated in arginine-serine (RS) domain-mediated bridging interactions with splicing factors of the SR protein family bound to exonic splicing enhancers (ESE), and these interactions can also stabilize U2AF65 binding. Complementation of the splicing activity of nuclear extracts depleted of U2AF by chromatography in oligo(dT)-cellulose requires, for some pre-mRNAs, only the presence of U2AF65. In contrast, splicing of a mouse immunoglobulin M (IgM) M1-M2 pre-mRNA requires both U2AF subunits. In this report we have investigated the sequence elements (e.g., Py tract strength, 3′ splice site AG, ESE) responsible for the U2AF35 dependence of IgM. The results indicate that (i) the IgM substrate is an AG-dependent pre-mRNA, (ii) U2AF35dependence correlates with AG dependence, and (iii) the identity of the first nucleotide of exon 2 is important for U2AF35function. In contrast, RS domain-mediated interactions with SR proteins bound to the ESE appear to be dispensable, because the purine-rich ESE present in exon M2 is not essential for U2AF35 activity and because a truncation mutant of U2AF35 consisting only of the pseudo-RNA recognition motif domain and lacking the RS domain is active in our complementation assays. While some of the effects of U2AF35 can be explained in terms of enhanced U2AF65 binding, other activities of U2AF35 do not correlate with increased cross-linking of U2AF65 to the Py tract. Collectively, the results argue that interaction of U2AF35 with a consensus 3′ splice site triggers events in spliceosome assembly in addition to stabilizing U2AF65binding, thus revealing a dual function for U2AF35 in pre-mRNA splicing.


1998 ◽  
Vol 18 (8) ◽  
pp. 4924-4934 ◽  
Author(s):  
Johann Soret ◽  
Renata Gattoni ◽  
Cécile Guyon ◽  
Alain Sureau ◽  
Michel Popielarz ◽  
...  

ABSTRACT The highly conserved SR family contains a growing number of phosphoproteins acting as both essential and alternative splicing factors. In this study, we have cloned human genomic and cDNA sequences encoding a novel SR protein designated SRp46. Nucleotide sequence analyses have revealed that the SRp46 gene corresponds to an expressed PR264/SC35 retropseudogene. As a result of mutations and amplifications, the SRp46 protein significantly differs from the PR264/SC35 factor, mainly at the level of its RS domain. Northern and Western blot analyses have established that SRp46 sequences are expressed at different levels in several human cell lines and normal tissues, as well as in simian cells. In contrast, sequences homologous to SRp46 are not present in mice. In vitro splicing studies indicate that the human SRp46 recombinant protein functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. In addition, complementation analyses performed with β-globin or adenovirus E1A transcripts and different splicing-deficient extracts have revealed that SRp46 does not display the same activity as PR264/SC35. These results demonstrate, for the first time, that an SR splicing factor, which represents a novel member of the SR family, is encoded by a functional retropseudogene.


1991 ◽  
Vol 11 (1) ◽  
pp. 445-457 ◽  
Author(s):  
R Jessberger ◽  
P Berg

We have designed an in vitro system using mammalian nuclear extracts, or fractions derived from them, that can restore the sequences missing at double-strand breaks (gaps) or in deletions. The recombination substrates consist of (i) recipient DNA, pSV2neo with gaps or deletions ranging from 70 to 390 bp in the neo sequence, and (ii) donor DNAs with either complete homology to the recipient (pSV2neo) or plasmids whose homology with pSV2neo is limited to a 1.0- to 1.3-kbp neo segment spanning the gaps or deletions. Incubation of these substrates with various enzyme fractions results in repair of the recipient DNA's disrupted neo gene. The recombinational repair was monitored by transforming recA Escherichia coli to kanamycin resistance and by a new assay which measures the extent of DNA strand transfer from the donor substrate to the recipient DNA. Thus, either streptavidin- or antidigoxigenin-tagged beads are used to separate the biotinylated or digoxigeninylated recipient DNA, respectively, after incubation with the isotopically labeled donor DNA. In contrast to the transfection assay, the DNA strand transfer measurements are direct, quantitative, rapid, and easy, and they provide starting material for the characterization of the recombination products and intermediates. Accordingly, DNA bound to beads serves as a suitable template for the polymerase chain reaction. With appropriate pairs of oligonucleotide primers, we have confirmed that both gaps and deletions are fully repaired, that deletions can be transferred from the recipient DNA to the donor's intact neo sequence, and that cointegrant molecules containing donor and recipient DNA sequences are formed.


Sign in / Sign up

Export Citation Format

Share Document