scholarly journals Ribosomal DNA Replication Fork Barrier and HOT1Recombination Hot Spot: Shared Sequences but Independent Activities

2000 ◽  
Vol 20 (13) ◽  
pp. 4948-4957 ◽  
Author(s):  
Teresa R. Ward ◽  
Margaret L. Hoang ◽  
Reeta Prusty ◽  
Corine K. Lau ◽  
Ralph L. Keil ◽  
...  

ABSTRACT In the ribosomal DNA of Saccharomyces cerevisiae, sequences in the nontranscribed spacer 3′ of the 35S ribosomal RNA gene are important to the polar arrest of replication forks at a site called the replication fork barrier (RFB) and also to thecis-acting, mitotic hyperrecombination site calledHOT1. We have found that the RFB and HOT1activity share some but not all of their essential sequences. Many of the mutations that reduce HOT1 recombination also decrease or eliminate fork arrest at one of two closely spaced RFB sites, RFB1 and RFB2. A simple model for the juxtaposition of RFB andHOT1 sequences is that the breakage of strands in replication forks arrested at RFB stimulates recombination. Contrary to this model, we show here that HOT1-stimulated recombination does not require the arrest of forks at the RFB. Therefore, whileHOT1 activity is independent of replication fork arrest,HOT1 and RFB require some common sequences, suggesting the existence of a common trans-acting factor(s).

1988 ◽  
Vol 8 (11) ◽  
pp. 4927-4935 ◽  
Author(s):  
M H Linskens ◽  
J A Huberman

Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the nontranscribed spacer region, (ii) only a fraction of the potential origins are utilized in a single S phase, and (iii) the replication forks moving counter to the direction of transcription of the 37S precursor RNA stop at or near the termination site of transcription. Consequently, most ribosomal DNA is replicated unidirectionally by forks moving in the direction of transcription and most replicons are larger than the repeat unit. The significance of this finding for the replication of abundantly transcribed genes is discussed.


2009 ◽  
Vol 8 (4) ◽  
pp. 487-495 ◽  
Author(s):  
Bidyut K. Mohanty ◽  
Narendra K. Bairwa ◽  
Deepak Bastia

ABSTRACT The replication terminator protein Fob1 of Saccharomyces cerevisiae specifically interacts with two tandem Ter sites (replication fork barriers) located in the nontranscribed spacer of ribosomal DNA (rDNA) to cause polar fork arrest. The Fob1-Ter complex is multifunctional and controls other DNA transactions such as recombination by multiple mechanisms. Here, we report on the regulatory roles of the checkpoint proteins in the initiation and progression of recombination at Fob1-Ter complexes. The checkpoint adapter proteins Tof1 and Csm3 either positively or negatively controlled recombination depending on whether it was provoked by polar fork arrest or by transcription, respectively. The absolute requirements for these proteins for inducing recombination at an active replication terminus most likely masked their negative modulatory role at a later step of the process. Other checkpoint proteins of the checkpoint adapter/mediator class such as Mrc1 and Rad9, which channel signals from the sensor to the effector kinase, tended to suppress recombination at Fob1-Ter complexes regardless of how it was initiated. We have also discovered that the checkpoint sensor kinase Mec1 and the effector Rad53 were positive modulators of recombination initiated by transcription but had little effect on recombination at Ter. The work also showed that the two pathways were Rad52 dependent but Rad51 independent. Since Ter sites occur in the intergenic spacer of rDNA from yeast to humans, the mechanism is likely to be of widespread occurrence.


1988 ◽  
Vol 8 (11) ◽  
pp. 4927-4935
Author(s):  
M H Linskens ◽  
J A Huberman

Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the nontranscribed spacer region, (ii) only a fraction of the potential origins are utilized in a single S phase, and (iii) the replication forks moving counter to the direction of transcription of the 37S precursor RNA stop at or near the termination site of transcription. Consequently, most ribosomal DNA is replicated unidirectionally by forks moving in the direction of transcription and most replicons are larger than the repeat unit. The significance of this finding for the replication of abundantly transcribed genes is discussed.


2016 ◽  
Vol 36 (10) ◽  
pp. 1451-1463 ◽  
Author(s):  
Shamsu Zaman ◽  
Malay Choudhury ◽  
James C. Jiang ◽  
Pankaj Srivastava ◽  
Bidyut K. Mohanty ◽  
...  

The NAD-dependent histone deacetylase Sir2 controls ribosomal DNA (rDNA) silencing by inhibiting recombination and RNA polymerase II-catalyzed transcription in the rDNA ofSaccharomyces cerevisiae. Sir2 is recruited to nontranscribed spacer 1 (NTS1) of the rDNA array by interaction between the RENT (regulation ofnucleolarsilencing andtelophase exit) complex and the replication terminator protein Fob1. The latter binds to its cognate sites, called replication termini (Ter) or replication fork barriers (RFB), that are located in each copy of NTS1. This work provides new mechanistic insights into the regulation of rDNA silencing and intrachromatid recombination by showing that Sir2 recruitment is stringently regulated by Fob1 phosphorylation at specific sites in its C-terminal domain (C-Fob1), which also regulates long-range Ter-Ter interactions. We show further that long-range Fob1-mediated Ter-Ter interactions intransare downregulated by Sir2. These regulatory mechanisms control intrachromatid recombination and the replicative life span (RLS).


2020 ◽  
Author(s):  
Christophe de La Roche Saint-André ◽  
Vincent Géli

AbstractDNA replication is a highly regulated process that occurs in the context of chromatin structure and is sensitive to several histone post-translational modifications. In Saccharomyces cerevisiae, the histone methylase Set1 is responsible for the transcription-dependent deposition of H3K4 methylation (H3K4me) throughout the genome. Here we show that a combination of a hypomorphic replication mutation (orc5-1) with the absence of Set1 (set1Δ) compromises the progression through S phase, and this is associated with a large increase in DNA damage. The ensuing DNA damage checkpoint activation, in addition to that of the spindle assembly checkpoint, restricts the growth of orc5-1 set1Δ. Interestingly, orc5-1 set1Δ is sensitive to the lack of RNase H activity while a reduction of histone levels is able to counterbalance the loss of Set1. We propose that the recently described Set1-dependent mitigation of transcription-replication conflicts becomes critical for growth when the replication forks accelerate due to decreased origin firing in the orc5-1 background. Furthermore, we show that an increase of reactive oxygen species (ROS) levels, likely a consequence of the elevated DNA damage, is partly responsible for the lethality in orc5-1 set1Δ.Author summaryDNA replication, that ensures the duplication of the genetic material, starts at discrete sites, termed origins, before proceeding at replication forks whose progression is carefully controlled in order to avoid conflicts with the transcription of genes. In eukaryotes, DNA replication occurs in the context of chromatin, a structure in which DNA is wrapped around proteins, called histones, that are subjected to various chemical modifications. Among them, the methylation of the lysine 4 of histone H3 (H3K4) is carried out by Set1 in Saccharomyces cerevisiae, specifically at transcribed genes. We report that, when the replication fork accelerates in response to a reduction of active origins, the absence of Set1 leads to accumulation of DNA damage. Because H3K4 methylation was recently shown to slow down replication at transcribed genes, we propose that the Set1-dependent becomes crucial to limit the occurrence of conflicts between replication and transcription caused by replication fork acceleration. In agreement with this model, stabilization of transcription-dependent structures or reduction histone levels, to limit replication fork velocity, respectively exacerbates or moderates the effect of Set1 loss. Last, but not least, we show that the oxidative stress associated to DNA damage is partly responsible for cell lethality.


Author(s):  
Casey Toft ◽  
Morgane Moreau ◽  
Jiri Perutka ◽  
Savitri Mandapati ◽  
Peter Enyeart ◽  
...  

In Escherichia coli, DNA replication termination is orchestrated by two clusters of Ter sites forming a DNA replication fork trap when bound by Tus proteins. The formation of a ‘locked’ Tus-Ter complex is essential for halting incoming DNA replication forks. However, the absence of replication fork arrest at some Ter sites raised questions about their significance. In this study, we examined the genome-wide distribution of Tus and found that only the six innermost Ter sites (TerA-E and G) were significantly bound by Tus. We also found that a single ectopic insertion of TerB in its non-permissive orientation could not be achieved, advocating against a need for ‘back-up’ Ter sites. Finally, examination of the genomes of a variety of Enterobacterales revealed a new replication fork trap architecture mostly found outside the Enterobacteriaceae family. Taken together, our data enabled the delineation of a narrow ancestral Tus-dependent DNA replication fork trap consisting of only two Ter sites.


2009 ◽  
Vol 29 (17) ◽  
pp. 4742-4756 ◽  
Author(s):  
Alexander Lorenz ◽  
Fekret Osman ◽  
Victoria Folkyte ◽  
Sevil Sofueva ◽  
Matthew C. Whitby

ABSTRACT Controlling the loading of Rad51 onto DNA is important for governing when and how homologous recombination is used. Here we use a combination of genetic assays and indirect immunofluorescence to show that the F-box DNA helicase (Fbh1) functions in direct opposition to the Rad52 orthologue Rad22 to curb Rad51 loading onto DNA in fission yeast. Surprisingly, this activity is unnecessary for limiting spontaneous direct-repeat recombination. Instead it appears to play an important role in preventing recombination when replication forks are blocked and/or broken. When overexpressed, Fbh1 specifically reduces replication fork block-induced recombination, as well as the number of Rad51 nuclear foci that are induced by replicative stress. These abilities are dependent on its DNA helicase/translocase activity, suggesting that Fbh1 exerts its control on recombination by acting as a Rad51 disruptase. In accord with this, overexpression of Fbh1 also suppresses the high levels of recombinant formation and Rad51 accumulation at a site-specific replication fork barrier in a strain lacking the Rad51 disruptase Srs2. Similarly overexpression of Srs2 suppresses replication fork block-induced gene conversion events in an fbh1Δ mutant, although an inability to suppress deletion events suggests that Fbh1 has a distinct functionality, which is not readily substituted by Srs2.


1993 ◽  
Vol 13 (10) ◽  
pp. 6600-6613
Author(s):  
R D Little ◽  
T H Platt ◽  
C L Schildkraut

We have used the multicopy human rRNA genes as a model system to study replication initiation and termination in mammalian chromosomes. Enrichment for replicating molecules was achieved by isolating S-phase enriched populations of cells by centrifugal elutriation, purification of DNA associated with the nuclear matrix, and a chromatographic procedure that enriches for molecules containing single-stranded regions, a characteristic of replication forks. Two-dimensional agarose gel electrophoresis techniques were used to demonstrate that replication appears to initiate at multiple sites throughout most of the 31-kb nontranscribed spacer (NTS) of human ribosomal DNA but not within the 13-kb transcription unit or adjacent regulatory elements. Although initiation events were detected throughout the majority of the NTS, some regions may initiate more frequently than others. Termination of replication, the convergence of opposing replication forks, was found throughout the ribosomal DNA repeat units, and, in some repeats, specifically at the junction of the 3' end of the transcription unit and the NTS. This site-specific termination of replication is the result of pausing of replication forks near the sites of transcription termination. The naturally occurring multicopy rRNA gene family offers a unique system to study mammalian DNA replication without the use of chemical synchronization agents.


Sign in / Sign up

Export Citation Format

Share Document