scholarly journals BSAP Can Repress Enhancer Activity by Targeting PU.1 Function

2000 ◽  
Vol 20 (6) ◽  
pp. 1911-1922 ◽  
Author(s):  
Shanak Maitra ◽  
Michael Atchison

ABSTRACT PU.1 and BSAP are transcription factors crucial for proper B-cell development. Absence of PU.1 results in loss of B, T, and myeloid cells, while absence of BSAP results in an early block in B-cell differentiation. Both of these proteins bind to the immunoglobulin κ chain 3′ enhancer, which is developmentally regulated during B-cell differentiation. We find here that BSAP can repress 3′ enhancer activity. This repression can occur in plasmacytoma lines or in a non-B-cell line in which the enhancer is activated by addition of the appropriate enhancer binding transcription factors. We show that the transcription factor PU.1 is a target of the BSAP-mediated repression. Although PU.1 and BSAP can physically interact through their respective DNA binding domains, this interaction does not affect DNA binding. When PU.1 function is assayed in isolation on a multimerized PU.1 binding site, BSAP targets a portion of the PU.1 transactivation domain (residues 7 to 30) for repression. The BSAP inhibitory domain (residues 358 to 385) is needed for this repression. Interestingly, the coactivator protein p300 can eliminate this BSAP-mediated repression. We also show that PU.1 can inhibit BSAP transactivation and that this repression requires PU.1 amino acids 7 to 30. Transfection of p300 resulted in only a partial reversal of PU.1-mediated repression of BSAP. When PU.1 function is assayed in the context of the immunoglobulin κ chain 3′ enhancer and associated binding proteins, BSAP represses PU.1 function by a distinct mechanism. This repression does not require the PU.1 transactivation or PEST domains and cannot be reversed by p300 expression. The possible roles of BSAP and PU.1 antagonistic activities in hematopoietic development are discussed.

2014 ◽  
Vol 289 (31) ◽  
pp. 21605-21616 ◽  
Author(s):  
Shuo Wang ◽  
Miles H. Linde ◽  
Manoj Munde ◽  
Victor D. Carvalho ◽  
W. David Wilson ◽  
...  

Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 40 ◽  
Author(s):  
Antonia Denis ◽  
Mario Alberto Martínez-Núñez ◽  
Silvia Tenorio-Salgado ◽  
Ernesto Perez-Rueda

In recent years, there has been a large increase in the amount of experimental evidence for diverse archaeal organisms, and these findings allow for a comprehensive analysis of archaeal genetic organization. However, studies about regulatory mechanisms in this cellular domain are still limited. In this context, we identified a repertoire of 86 DNA-binding transcription factors (TFs) in the archaeon Pyrococcus furiosus DSM 3638, that are clustered into 32 evolutionary families. In structural terms, 45% of these proteins are composed of one structural domain, 41% have two domains, and 14% have three structural domains. The most abundant DNA-binding domain corresponds to the winged helix-turn-helix domain; with few alternative DNA-binding domains. We also identified seven regulons, which represent 13.5% (279 genes) of the total genes in this archaeon. These analyses increase our knowledge about gene regulation in P. furiosus DSM 3638 and provide additional clues for comprehensive modeling of transcriptional regulatory networks in the Archaea cellular domain.


1992 ◽  
Vol 103 (1) ◽  
pp. 9-14 ◽  
Author(s):  
K.A. Lee

Dimeric transcription factors that bind to DNA are often grouped into families on the basis of dimerization and DNA-binding specificities. cDNA cloning studies have established that members of the same family have structurally related dimerisation and DNA-binding domains but diverge in other regions that are important for transcriptional activation. These features lead to the straightforward suggestion that although all members of a family bind to similar DNA elements, individual members exhibit distinct transcriptional effector functions. This simple view is now supported by experimental evidence from those systems that have proved amenable to study. There are however some largely unaddressed questions that concern the mechanisms that allow family members to go about their business without interference from their highly related siblings. Here I will discuss some insights from studies of the bZIP class of transcription factors.


Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2440-2450 ◽  
Author(s):  
Itaru Matsumura ◽  
Akira Kawasaki ◽  
Hirokazu Tanaka ◽  
Junko Sonoyama ◽  
Sachiko Ezoe ◽  
...  

Abstract Lineage-specific transcription factors play crucial roles in the development of hematopoietic cells. In a previous study, it was demonstrated that Ras activation was involved in thrombopoietin-induced megakaryocytic differentiation. In this study, constitutive Ras activation by H-rasG12V evoked megakaryocytic maturation of erythroleukemia cell lines F-36P and K562, but not of myeloid cell line 32D cl3 that lacks GATA-1. However, the introduction of GATA-1 led to reprogramming of 32D cl3 toward erythrocytic/megakaryocytic lineage and enabled it to undergo megakaryocytic differentiation in response to H-rasG12V. In contrast, the overexpression of PU.1 and c-Myb changed the phenotype of K562 from erythroid to myeloid/monocytic lineage and rendered K562 to differentiate into granulocytes and macrophages in response to H-rasG12V, respectively. In GATA-1–transfected 32D cl3, the endogenous expression of PU.1 and c-Myb was easily detectable, but their activities were reduced severely. Endogenous GATA-1 activities were markedly suppressed in PU.1-transfected and c-myb–transfected K562. As for the mechanisms of these reciprocal inhibitions, GATA-1 and PU.1 were found to associate through their DNA-binding domains and to inhibit the respective DNA-binding activities of each other. In addition, c-Myb bound to GATA-1 and inhibited its DNA-binding activities. Mutant GATA-1 and PU.1 that retained their own transcriptional activities but could not inhibit the reciprocal partner were less effective in changing the lineage phenotype of 32D cl3 and K562. These results suggested that GATA-1 activities may be crucial for Ras-mediated megakaryocytic differentiation and that its activities may be regulated by the direct interaction with other lineage-specific transcription factors such as PU.1 and c-Myb.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Pier Paolo Piccaluga ◽  
Claudio Agostinelli ◽  
Fabio Fuligni ◽  
Simona Righi ◽  
Claudio Tripodo ◽  
...  

The interferon-inducible DNA sensor IFI16 is involved in the modulation of cellular survival, proliferation, and differentiation. In the hematopoietic system, IFI16 is consistently expressed in the CD34+ stem cells and in peripheral blood lymphocytes; however, little is known regarding its regulation during maturation of B- and T-cells. We explored the role of IFI16 in normal B-cell subsets by analysing its expression and relationship with the major transcription factors involved in germinal center (GC) development and plasma-cell (PC) maturation.IFI16mRNA was differentially expressed in B-cell subsets with significant decrease inIFI16mRNA in GC and PCs with respect to naïve and memory subsets.IFI16mRNA expression is inversely correlated with a few master regulators of B-cell differentiation such asBCL6, XBP1, POU2AF1, andBLIMP1. In contrast,IFI16expression positively correlated withSTAT3, REL, SPIB, RELA, RELB, IRF4, STAT5B, andSTAT5A. ARACNE algorithm indicated a direct regulation ofIFI16byBCL6,STAT5B, andRELB, whereas the relationship betweenIFI16and the other factors is modulated by intermediate factors. In addition, analysis of the CD40 signaling pathway showed thatIFI16gene expression directly correlated with NF-κB activation, indicating that IFI16 could be considered an upstream modulator of NF-κB in human B-cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 967-967
Author(s):  
Ken H. Young ◽  
Nancy Patten ◽  
Sim Truong ◽  
Jens Eickhoff ◽  
Gabrielle L. Rocque ◽  
...  

Abstract Abstract 967 Mutations of the TP53 tumor suppressor gene are associated with a poor clinical outcome in DLBCL patients treated with CHOP. The impact of TP53 mutations on clinical outcome of DLBCL patients treated with Rituxan-CHOP has not been comprehensively analyzed. The purpose of this study was to analyze the frequency and type of TP53 mutations in Rituxan-CHOP treated DLBCL patients from twenty-two medical centers, and to correlate these with clinical outcome. TP53 mutations were identified in 138/604 (22.7%) Rituxan-CHOP treated DLBCL cases and included missense (n=133), nonsense (n=16), splice site (n=9) and frameshift (n=1) mutations. The presence of any TP53 mutation correlated with poor overall survival (OS) with a median OS of 50 months in the TP53 mutation group versus 69 months in the wild-type group (wt-TP53, P=0.0042). Seventy-three of 138 cases (53%) had mutations in the DNA binding domains of the TP53 gene, which were found to be the most important predictor of poor OS (P=0.0044). In contrast, mutations in the non-DNA binding domains did not correlate with poor OS (P=0.157). Overexpression of p53 protein significantly correlated with only TP53 missense mutations (P=0.002), but not with other types of TP53 mutations, while TP53 deletion did not correlate with mutation or OS. In comparison to our previous series of patients treated only with CHOP, Rituxan-CHOP regimen improved OS in both wt-TP53 and TP53 mutated groups. The 5-year survival rate was 42% in patients with any TP53 mutation (median survival=50 months) and 41% in patients with the DNA-binding domain mutations (median survival=49 months) compared to 52% for those with wt-TP53 (median survival=69 months). The complete remission rate was 51% in patients with any TP53 mutation and 44% in patients with the DNA-binding domain mutations, compared to 77% for those with wt-TP53. However, the clinical outcome and treatment response to the Rituxan-CHOP varied in patients with mutations in different regions of the DNA-binding domains. Patients with mutations in the DNA minor binding groove motif (Loop L3, 17% of all mutations) had significantly decreased median OS (17 months) when compared to patients with Loop L2 (16% of all mutations) or loop-sheet-helix motifs (Loop L1-S10-H2, 20% of all mutations) with median OS of 49 and 50 months, respectively. In contrast to our previous CHOP series study, median survival was significantly improved for Rituxan-CHOP treated DLBCL patients with mutations in the loop-sheet-helix motifs (43 months). Multivariate analysis confirmed that TP53 mutations and activated B-cell-like (ABC)/germinal center B-cell-like (GCB) subtype classification were independent predictors of OS with a hazard ratio of 0.69 (GCB vs ABC, 95% CI 0.49-0.98) and 1.60 (TP53 vs wt-TP53, 95% CI 1.10-2.31), respectively. Similar to our previous CHOP study, the TP53 mutation profile, regardless of location, was found to stratify GCB-DLBCL, but not ABC-DLBCL, into molecularly distinct subsets with different clinical outcomes in Rituxan-CHOP treated DLBCL patients. This study demonstrates the importance of TP53 mutational profile for predicting clinical outcome. Elucidation of the roles of specific TP53 domain mutations, as documented in our study, will help in refining prognostic models for DLBCL patients treated with either the CHOP or Rituxan-CHOP regimen. These findings also provide the rationale and strategies for p53 targeted therapeutic intervention in DLBCL patients. Disclosures: Kahl: Milllennium: Consultancy, Research Funding; Cephalon: Consultancy, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4341-4341
Author(s):  
Nikki R. Kong ◽  
Li Chai ◽  
Astar Winoto ◽  
Robert Tjian

Abstract Hematopoiesis is a multi-step developmental process that requires an intricate coordination of signal relays and transcriptional regulation to give rise to all blood lineages in the organism. Hematopoietic stem/progenitor cells (HSPCs) can be driven to differentiate along three main lineages: myeloid, erythroid, and lymphoid. One of the earliest lineage decisions for HSPCs is whether to adopt the lymphoid or myeloid fate. Despite the discovery of several transcription factors required for different lineages of hematopoietic differentiation, the understanding of how gene expression allows HSPCs to adopt the lymphoid fate still remains incomplete. A study using an inducible hematopoietic-specific (Mx1-Cre) KO mouse line found that Myocyte Enhancer Factor 2C (MEF2C) is required for multi-potent HSPCs to differentiate into the lymphoid lineage (Stehling-Sun et al, 2009). However, the mechanisms of how MEF2C is activated and in turn, drives lymphoid fate specification are not known. Through a candidates approach with co-expression and co-immunoprecipitation, we have identified Early B Cell Factor 1 (EBF1) to be a specific interacting partner of MEF2C, and not other B cell specific transcription factors such as E12, E47, or PAX5. Genome-wide survey of MEF2C and EBF1 binding sites via chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in a proB cell line revealed that these two sequence-specific transcription factors co-occupy the promoters and intragenic regions of many B cell specific genes such as Il7ra, Myb, Foxo1, Ets1, Ebf1 itself, and Pou2af1. Regulatory regions of Il7ra and Foxo1 derived from the ChIP-seq data, as well as an artificial enhancer containing trimerized MEF2C and EBF1 binding sites, were examined in luciferase reporter assays and found to be sufficient to drive transcription from a minimal reporter in 293T cells. Further, this activation was co-dependent on MEF2C and EBF1 expression. The functional relevance of MEF2C binding was further supported by gene expression analyses of MEF2C-regulated B lineage genes in Mx1-Cre Mef2c KO mice compared to WT mice. Consistent with ChIP-seq and luciferase reporter assays, Myb, Ebf1, Il7ra, and Foxo1 all had significantly decreased expression levels in MEF2C-null HSPCs as well as B lineage progenitor cells, compared to sex-matched littermate control mice. Interestingly, myeloid gene expression in Mef2c-KO mice was increased compared to WT control. MEF2C ChIP-seq in a murine HSPC line revealed that it binds myeloid lineage gene targets that are not regulated by MEF2C in proB cells. These results suggest that MEF2C can repress myeloid gene expression in HSPCs. To elucidate the mechanism of this functional switch, we tested the requirement for MAPK pathways to phosphorylate and activate MEF2C at three previously identified residues in order to drive B cell differentiation. Inhibition of p38 MAPK (p38i), but not ERK1/2/5, decreased the potential of HSPCs to differentiate into B220+CD19+ B cells cultured with cytokines that drive this particular lineage fate. Instead, p38i-treated progenitor cells gave rise to more myeloid cells. 65% of this phenotype was rescued by over-expressing a phosphomimetic mutant of MEF2C that can bypass p38 inhibition. Furthermore, MEF2C is known to bind class II HDAC proteins to repress gene expression, providing a possible mechanism for its repression of myeloid transcription program. Supporting this mechanism, phosphomimetic and HDAC-binding double mutant of MEF2C can rescue p38 inhibition phenotype almost 100%. Taken together, this study elucidated the molecular mechanisms of a key lymphoid-specific lineage fate determinant, MEF2C. We discovered that p38 MAPK converts MEF2C from a transcriptional repressor to an activator by phosphorylation in B cell specification, which can be applied to understanding other cell differentiation processes regulated by this important stress-induced signaling pathway. Furthermore, we identified MEF2C’s binding and co-activating partner EBF1, several novel B cell specific targets that it activates in proB cells, and a novel myeloid transcription program that it represses in hematopoietic progenitors. Therefore, these results expanded our understanding of the intricate transcription network that regulates B cell differentiation. Disclosures No relevant conflicts of interest to declare.


1999 ◽  
Vol 19 (4) ◽  
pp. 2853-2862 ◽  
Author(s):  
Jeanne Wilson-Rawls ◽  
Jeffery D. Molkentin ◽  
Brian L. Black ◽  
Eric N. Olson

ABSTRACT Skeletal muscle gene expression is dependent on combinatorial associations between members of the MyoD family of basic helix-loop-helix (bHLH) transcription factors and the myocyte enhancer factor 2 (MEF2) family of MADS-box transcription factors. The transmembrane receptor Notch interferes with the muscle-inducing activity of myogenic bHLH proteins, and it has been suggested that this inhibitory activity of Notch is directed at an essential cofactor that recognizes the DNA binding domains of the myogenic bHLH proteins. Given that MEF2 proteins interact with the DNA binding domains of myogenic bHLH factors to cooperatively regulate myogenesis, we investigated whether members of the MEF2 family might serve as targets for the inhibitory effects of Notch on myogenesis. We show that a constitutively activated form of Notch specifically blocks DNA binding by MEF2C, as well as its ability to cooperate with MyoD and myogenin to activate myogenesis. Responsiveness to Notch requires a 12-amino-acid region of MEF2C immediately adjacent to the DNA binding domain that is unique to this MEF2 isoform. Two-hybrid assays and coimmunoprecipitations show that this region of MEF2C interacts directly with the ankyrin repeat region of Notch. These findings reveal a novel mechanism for Notch-mediated inhibition of myogenesis and demonstrate that the Notch signaling pathway can discriminate between different members of the MEF2 family.


Sign in / Sign up

Export Citation Format

Share Document