scholarly journals The Essential Function of the Small Tim Proteins in the TIM22 Import Pathway Does Not Depend on Formation of the Soluble 70-Kilodalton Complex

2001 ◽  
Vol 21 (18) ◽  
pp. 6132-6138 ◽  
Author(s):  
Michael P. Murphy ◽  
Danielle Leuenberger ◽  
Sean P. Curran ◽  
Wolfgang Oppliger ◽  
Carla M. Koehler

ABSTRACT The TIM22 protein import pathway of the yeast mitochondrion contains several components, including a family of five proteins (Tim8p, -9p, -10p, -12p, and -13p [Tim, for translocase of inner membrane]) that are located in the intermembrane space and are 25% identical. Tim9p and Tim10p have dual roles in mediating the import of inner membrane proteins. Like the Tim8p-Tim13p complex, the Tim9p-Tim10p complex functions as a putative chaperone to guide hydrophobic precursors across the intermembrane space. Like membrane-associated Tim12p, they are members of the Tim18p-Tim22p-Tim54p membrane complex that mediates precursor insertion into the membrane. To understand the role of this family in protein import, we have used a genetic approach to manipulate the complement of the small Tim proteins. A strain has been constructed that lacks the 70-kDa soluble Tim8p-Tim13p and Tim9p-Tim10p complexes in the intermembrane space. Instead, a functional version of Tim9p (Tim9S67Cp), identified as a second-site suppressor of a conditional tim10 mutant, maintains viability. Characterization of this strain revealed that Tim9S67Cp and Tim10p were tightly associated with the inner membrane, the soluble 70-kDa Tim8p-Tim13p and Tim9p-Tim10p complexes were not detectable, and the rate of protein import into isolated mitochondria proceeded at a slower rate. An arrested translocation intermediate bound to Tim9S67Cp was located in the intermembrane space, associated with the inner membrane. We suggest that the 70-kDa complexes facilitate import, similar to the outer membrane receptors of the TOM (hetero-oligomeric translocase of the outer membrane) complex, and the essential role of Tim9p and Tim10p may be to mediate protein insertion in the inner membrane with the TIM22 complex.

1996 ◽  
Vol 16 (8) ◽  
pp. 4035-4042 ◽  
Author(s):  
D A Court ◽  
F E Nargang ◽  
H Steiner ◽  
R S Hodges ◽  
W Neupert ◽  
...  

Tom22 is an essential component of the protein translocation complex (Tom complex) of the mitochondrial outer membrane. The N-terminal domain of Tom22 functions as a preprotein receptor in cooperation with Tom20. The role of the C-terminal domain of Tom22, which is exposed to the intermembrane space (IMS), in its own assembly into the Tom complex and in the import of other preproteins was investigated. The C-terminal domain of Tom22 is not essential for the targeting and assembly of this protein, as constructs lacking part or all of the IMS domain became imported into mitochondria and assembled into the Tom complex. Mutant strains of Neurospora expressing the truncated Tom22 proteins were generated by a novel procedure. These mutants displayed wild-type growth rates, in contrast to cells lacking Tom22, which are not viable. The import of proteins into the outer membrane and the IMS of isolated mutant mitochondria was not affected. Some but not all preproteins destined for the matrix and inner membrane were imported less efficiently. The reduced import was not due to impaired interaction of presequences with their specific binding site on the trans side of the outer membrane. Rather, the IMS domain of Tom22 appears to slightly enhance the efficiency of the transfer of these preproteins to the import machinery of the inner membrane.


2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Toshiya Endo ◽  
Koji Yamano

Abstract Mitochondria are two-membrane bounded organelles consisting of 1000–2000 different proteins, most of which are synthesized in the cytosol and subsequently imported into mitochondria. The imported proteins are further sorted to one of the four compartments, the outer membrane, intermembrane space, inner membrane, and matrix, mostly following one of the five major pathways. Mitochondrial protein import and sorting are mediated by the translocator complexes in the membranes and chaperones in the aqueous compartments operating along the import pathways. Here, we summarize the expanding knowledge on the roles of translocators, chaperones, and related components in the multiple pathways for mitochondrial protein trafficking.


2002 ◽  
Vol 158 (6) ◽  
pp. 1017-1027 ◽  
Author(s):  
Sean P. Curran ◽  
Danielle Leuenberger ◽  
Einhard Schmidt ◽  
Carla M. Koehler

Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p–Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p–Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p–Tim13p complex is not dependent on zinc, and the purified Tim8p–Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Qun Chen ◽  
Edward J Lesnefsky

Cardiac ischemia decreases the rate of oxidative phosphorylation (OXPHOS) and the contents of cardiolipin and cytochrome c (CYTc) in subsarcolemmal mitochondria (SSM) in the isolated rabbit heart. CYTc release first requires damage to the inner mitochondrial membrane to delocalize CYTc to the intermembrane space, followed by breach of the outer membrane. The decrease in cardiolipin content allows CYTc detachment from the inner membrane. It is still unclear how CYTc passes the outer membrane for release into cytosol. We propose that ischemia increases outer-membrane leakage by depletion of bcl-2 content, and that oxidants generated by the electron transport chain (ETC) during ischemia favor bcl-2 depletion. We used blockade of the proximal ETC at complex I during ischemia with amobarbital (AMO) to test the role of ETC during ischemia. Langendorff perfused rabbit hearts were treated with AMO (2.5 mM for 1 min) or vehicle immediately before 30 min global ischemia (37°C). Time controls were perfused for 45 min. SSM were isolated at the end of ischemia. CYTc content (reduced minus oxidized spectra), OXPHOS and bcl-2 (western blotting) were measured. Ischemia decreased OXPHOS with TMPD-ascorbate as substrate (electron donor to complex IV via CYTc) and the contents of CYTc and bcl-2. In contrast, AMO preserves OXPHOS, CYTc and bcl-2. Thus, blockade of electron transport preserves bcl-2 content during ischemia with enhanced CYTc retention by SSM. The ETC contributes to mitochondrial damage during ischemia, depleting cardiolipin in the inner membrane and bcl-2 in the outer membrane favoring the two steps required for release of CYTc from mitochondria during ischemia and reperfusion.


1997 ◽  
Vol 17 (11) ◽  
pp. 6574-6584 ◽  
Author(s):  
M Moczko ◽  
U Bömer ◽  
M Kübrich ◽  
N Zufall ◽  
A Hönlinger ◽  
...  

Mitochondrial protein import is thought to involve the sequential interaction of preproteins with binding sites on cis and trans sides of the membranes. For translocation across the outer membrane, preproteins first interact with the cytosolic domains of import receptors (cis) and then are translocated through a general import pore, in a process proposed to involve binding to a trans site on the intermembrane space (IMS) side. Controversial results have been reported for the role of the IMS domain of the essential outer membrane protein Tom22 in formation of the trans site. We show with different mutant mitochondria that a lack of the IMS domain only moderately reduces the direct import of preproteins with N-terminal targeting sequences. The dependence of import on the IMS domain of Tom22 is significantly enhanced by removing the cytosolic domains of import receptors or by performing import in two steps, i.e., accumulation of a preprotein at the outer membrane in the absence of a membrane potential (delta psi) and subsequent import after reestablishment of a delta psi. After the removal of cytosolic receptor domains, two-step import of a cleavable preprotein strictly requires the IMS domain. In contrast, preproteins with internal targeting information do not depend on the IMS domain of Tom22. We conclude that the negatively charged IMS domain of Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences, in agreement with the acid chain hypothesis of mitochondrial protein import.


2007 ◽  
Vol 179 (4) ◽  
pp. 585-591 ◽  
Author(s):  
Stephan Kutik ◽  
Bernard Guiard ◽  
Helmut E. Meyer ◽  
Nils Wiedemann ◽  
Nikolaus Pfanner

Most mitochondrial proteins are synthesized in the cytosol and imported into one of the four mitochondrial compartments: outer membrane, intermembrane space, inner membrane, and matrix. Each compartment contains protein complexes that interact with precursor proteins and promote their transport. These translocase complexes do not act as independent units but cooperate with each other and further membrane complexes in a dynamic manner. We propose that a regulated coupling of translocases is important for the coordination of preprotein translocation and efficient sorting to intramitochondrial compartments.


2003 ◽  
Vol 160 (3) ◽  
pp. 303-311 ◽  
Author(s):  
Edith D. Wong ◽  
Jennifer A. Wagner ◽  
Sidney V. Scott ◽  
Voytek Okreglak ◽  
Timothy J. Holewinske ◽  
...  

Abalance between fission and fusion events determines the morphology of mitochondria. In yeast, mitochondrial fission is regulated by the outer membrane–associated dynamin-related GTPase, Dnm1p. Mitochondrial fusion requires two integral outer membrane components, Fzo1p and Ugo1p. Interestingly, mutations in a second mitochondrial-associated dynamin-related GTPase, Mgm1p, produce similar phenotypes to fzo1 and ugo cells. Specifically, mutations in MGM1 cause mitochondrial fragmentation and a loss of mitochondrial DNA that are suppressed by abolishing DNM1-dependent fission. In contrast to fzo1ts mutants, blocking DNM1-dependent fission restores mitochondrial fusion in mgm1ts cells during mating. Here we show that blocking DNM1-dependent fission in Δmgm1 cells fails to restore mitochondrial fusion during mating. To examine the role of Mgm1p in mitochondrial fusion, we looked for molecular interactions with known fusion components. Immunoprecipitation experiments revealed that Mgm1p is associated with both Ugo1p and Fzo1p in mitochondria, and that Ugo1p and Fzo1p also are associated with each other. In addition, genetic analysis of specific mgm1 alleles indicates that Mgm1p's GTPase and GTPase effector domains are required for its ability to promote mitochondrial fusion and that Mgm1p self-interacts, suggesting that it functions in fusion as a self-assembling GTPase. Mgm1p's localization within mitochondria has been controversial. Using protease protection and immuno-EM, we have shown previously that Mgm1p localizes to the intermembrane space, associated with the inner membrane. To further test our conclusions, we have used a novel method using the tobacco etch virus protease and confirm that Mgm1p is present in the intermembrane space compartment in vivo. Taken together, these data suggest a model where Mgm1p functions in fusion to remodel the inner membrane and to connect the inner membrane to the outer membrane via its interactions with Ugo1p and Fzo1p, thereby helping to coordinate the behavior of the four mitochondrial membranes during fusion.


2020 ◽  
Vol 401 (6-7) ◽  
pp. 699-708 ◽  
Author(s):  
Alexander Grevel ◽  
Thomas Becker

AbstractMitochondria import the vast majority of their proteins via dedicated protein machineries. The translocase of the outer membrane (TOM complex) forms the main entry site for precursor proteins that are produced on cytosolic ribosomes. Subsequently, different protein sorting machineries transfer the incoming preproteins to the mitochondrial outer and inner membranes, the intermembrane space, and the matrix. In this review, we highlight the recently discovered role of porin, also termed voltage-dependent anion channel (VDAC), in mitochondrial protein biogenesis. Porin forms the major channel for metabolites and ions in the outer membrane of mitochondria. Two different functions of porin in protein translocation have been reported. First, it controls the formation of the TOM complex by modulating the integration of the central receptor Tom22 into the mature translocase. Second, porin promotes the transport of carrier proteins toward the carrier translocase (TIM22 complex), which inserts these preproteins into the inner membrane. Therefore, porin acts as a coupling factor to spatially coordinate outer and inner membrane transport steps. Thus, porin links metabolite transport to protein import, which are both essential for mitochondrial function and biogenesis.


1995 ◽  
Vol 73 (S1) ◽  
pp. 193-197 ◽  
Author(s):  
Deborah A. Court ◽  
Roland Lill ◽  
Walter Neupert

The majority of proteins within mitochondria are synthesized on cytosolic ribosomes and imported into the organelles. Protein complexes in the mitochondrial outer membrane harbour both the receptors that recognize these preproteins, and a translocation pore. These "receptor complexes" are the entry points for most preproteins, which are subsequently targeted to their final submitochondrial locations. The outer membrane complexes cooperate with the import machinery of the inner membrane to target preproteins to the inner membrane itself, the matrix, or, in some cases, to the intermembrane space. In isolated outer membranes, these complexes are capable of accurately importing preproteins destined for the outer membrane. Our current understanding of the composition, function, and biogenesis of these outer membrane receptor complexes is the focus of this article. Key words: mitochondria, outer membrane, protein import, receptors.


Sign in / Sign up

Export Citation Format

Share Document