scholarly journals Mitotic Phosphorylation of Histone H3: Spatio-Temporal Regulation by Mammalian Aurora Kinases

2002 ◽  
Vol 22 (3) ◽  
pp. 874-885 ◽  
Author(s):  
Claudia Crosio ◽  
Gian Maria Fimia ◽  
Romain Loury ◽  
Masashi Kimura ◽  
Yukio Okano ◽  
...  

ABSTRACT Phosphorylation at a highly conserved serine residue (Ser-10) in the histone H3 tail is considered to be a crucial event for the onset of mitosis. This modification appears early in the G2 phase within pericentromeric heterochromatin and spreads in an ordered fashion coincident with mitotic chromosome condensation. Mutation of Ser-10 is essential in Tetrahymena, since it results in abnormal chromosome segregation and extensive chromosome loss during mitosis and meiosis, establishing a strong link between signaling and chromosome dynamics. Although mitotic H3 phosphorylation has been long recognized, the transduction routes and the identity of the protein kinases involved have been elusive. Here we show that the expression of Aurora-A and Aurora-B, two kinases of the Aurora/AIK family, is tightly coordinated with H3 phosphorylation during the G2/M transition. During the G2 phase, the Aurora-A kinase is coexpressed while the Aurora-B kinase colocalizes with phosphorylated histone H3. At prophase and metaphase, Aurora-A is highly localized in the centrosomic region and in the spindle poles while Aurora-B is present in the centromeric region concurrent with H3 phosphorylation, to then translocate by cytokinesis to the midbody region. Both Aurora-A and Aurora-B proteins physically interact with the H3 tail and efficiently phosphorylate Ser10 both in vitro and in vivo, even if Aurora-A appears to be a better H3 kinase than Aurora-B. Since Aurora-A and Aurora-B are known to be overexpressed in a variety of human cancers, our findings provide an attractive link between cell transformation, chromatin modifications and a specific kinase system.

2007 ◽  
Vol 27 (24) ◽  
pp. 8533-8546 ◽  
Author(s):  
Tae-Hong Kang ◽  
Do-Young Park ◽  
Yoon Ha Choi ◽  
Kyung-Jin Kim ◽  
Ho Sup Yoon ◽  
...  

ABSTRACT Mitotic chromatin condensation is essential for cell division in eukaryotes. Posttranslational modification of the N-terminal tail of histone proteins, particularly by phosphorylation by mitotic histone kinases, may facilitate this process. In mammals, aurora B is believed to be the mitotic histone H3 Ser10 kinase; however, it is not sufficient to phosphorylate H3 Ser10 with aurora B alone. We show that histone H3 is phosphorylated by vaccinia-related kinase 1 (VRK1). Direct phosphorylation of Thr3 and Ser10 in H3 by VRK1 both in vitro and in vivo was observed. Loss of VRK1 activity was associated with a marked decrease in H3 phosphorylation during mitosis. Phosphorylation of Ser10 by VRK1 is similar to that by aurora B. Moreover, expression and chromatin localization of VRK1 depended on the cell cycle phase. Overexpression of VRK1 resulted in a dramatic condensation of nuclei. Our findings collectively support a role of VRK1 as a novel mitotic histone H3 kinase in mammals.


2010 ◽  
Vol 8 (3) ◽  
pp. 373-384 ◽  
Author(s):  
Jessica J. Huck ◽  
Mengkun Zhang ◽  
Alice McDonald ◽  
Doug Bowman ◽  
Kara M. Hoar ◽  
...  

2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 344-344
Author(s):  
Patricia Y. Akinfenwa ◽  
Nonna V. Kolomeyevskaya ◽  
Claire M. Mach ◽  
Zhen Li ◽  
Matthew L. Anderson

2003 ◽  
Vol 162 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Yasuhiko Terada ◽  
Yumi Uetake ◽  
Ryoko Kuriyama

A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of γ-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with γ-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring γ-tubulin to the centrosome and organizing microtubule-nucleating sites via its interaction with the COOH-terminal sequence of CNN.


2001 ◽  
Vol 114 (24) ◽  
pp. 4371-4384 ◽  
Author(s):  
Janni Petersen ◽  
Jeannie Paris ◽  
Martin Willer ◽  
Michel Philippe ◽  
Iain M. Hagan

Metazoans contain three aurora-related kinases. Aurora A is required for spindle formation while aurora B is required for chromosome condensation and cytokinesis. Less is known about the function of aurora C. S. pombe contains a single aurora-related kinase, Ark1. Although Ark1 protein levels remained constant as cells progressed through the mitotic cell cycle, its distribution altered during mitosis and meiosis. Throughout G2 Ark1 was concentrated in one to three nuclear foci that were not associated with the spindle pole body/centromere complex. Following commitment to mitosis Ark1 associated with chromatin and was particularly concentrated at several sites including kinetochores/centromeres. Kinetochore/centromere association diminished during anaphase A, after which it was distributed along the spindle. The protein became restricted to a small central zone that transiently enlarged as the spindle extended. As in many other systems mitotic fission yeast cells exhibit a much greater degree of phosphorylation of serine 10 of histone H3 than interphase cells. A number of studies have linked this modification with chromosome condensation. Ark1 immuno-precipitates phosphorylated serine 10 of histone H3 in vitro. This activity was highest in mitotic extracts. The absence of the histone H3 phospho-serine 10 epitope from mitotic cells in which the ark1+ gene had been deleted (ark1.Δ1); the inability of these cells to resolve their chromosomes during anaphase and the co-localisation of this phospho-epitope with Ark1 early in mitosis, all suggest that Ark1 phosphorylates serine 10 of histone H3 in vivo. ark1.Δ1 cells also exhibited a reduction in kinetochore activity and a minor defect in spindle formation. Thus the enzyme activity, localisation and phenotype arising from our manipulations of this single fission yeast aurora kinase family member suggest that this single kinase is executing functions that are separately implemented by distinct aurora A and aurora B kinases in higher systems.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4388-4388
Author(s):  
Rich Woessner ◽  
Chris Corrette ◽  
Shelley Allen ◽  
Jeremy Hans ◽  
Qian Zhao ◽  
...  

Abstract Kinesins are eukaryotic microtubule-associated motor proteins. One of these, kinesin spindle protein (KSP) is a mitotic-specific kinesin that plays a key role in spindle pole separation and production of the bipolar spindle, as well as centrosome separation and maturation. As KSP is expressed predominately in proliferating cells and is absent from postmitotic neurons, inhibition of KSP has the potential to provide the antitumor activity of a mitotic inhibitor while avoiding peripheral neuropathy. ARRY-429520 is a member of a series of KSP inhibitors discovered and optimized by structure-based design. It is a potent inhibitor of human KSP (IC50 6 nM), with an EC50 of 1.5 nM for cellular phosphorylation of histone H3 (a pharmacodynamic marker for accumulation of cells in mitosis), and in vitro antiproliferative IC50s ranging from subnanomolar to low single digit nanomolar across a varity of human and murine tumor cell lines. We report here the in vivo characterization of this compound. ARRY-429520 inhibits histone (H3) phosphorylation in tumor xenografts , showing that the compound has pharmacodynamic activity in vivo. As a result, it is a highly efficacious inhibitor of the growth of tumor xenografts. At its maximally tolerated dose in mice of 25 – 30 mg/kg i.p. on a Q4Dx3 schedule, ARRY-429520 caused tumor regressions, with some complete responses, in subcutaneous mouse xenograft models of leukemia: HL-60 (acute promyelocytic leukemia) and K-562 (chronic myelogenous leukemia). The compound was also highly efficacious against other tumor types, including HT-29 (colon), HCT-116 (colon), and A2780 (ovarian). ARRY-429520 also showed activity in intravenous leukemia models. The molecule possess desirable drug-like properties, including high aqueous solubility (> 4 mg/ml at physiological pH), low CYP inhibition (> 25uM for 3A4, 2C9, 1A2, 2D6, and 2C19), and pharmacokinetics favorable for an IV-infused targeted chemotherapeutic.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 109-109 ◽  
Author(s):  
Qiang Jeremy Wen ◽  
Benjamin Goldenson ◽  
Sebastien Malinge ◽  
Brady L Stein ◽  
Terra L Lasho ◽  
...  

Abstract We recently reported that the induction of polyploidization of malignant megakaryocytes shows great promise as a new therapy for acute leukemia. Polyploidization inducers such as dimethylfasudil (diMF) and MLN8237, both of which target Aurora A kinase (AURKA), induce proliferation arrest, polyploidization, expression of megakaryocyte differentiation markers and apoptosis of leukemic megakaryocytes in vitro and in vivo. Since megakaryocytes in primary myelofibrosis (PMF) show impaired polyploidization and maturation, and likely directly contribute to the disease, we predicted that polyploidization inducers would provide a new therapeutic strategy. To determine the effect of these compounds on the growth of MPN cells, we first treated the JAK2 V617F mutant megakaryocytic SET2 cell line with varying doses of MLN8237 and diMF. Both compounds effectively and dose dependently inhibited proliferation, induced polyploidization and upregulation of lineage specific markers CD41 and CD42, and increased apoptosis. Furthermore, MLN8237 synergized with ruxolitinib to induce apoptosis of the SET2 cells and also potently induced growth arrest of JAK2 inhibitor persistent SET2 cells. We observed a similar polyploidization and differentiating activity of MLN8237 and diMF on megakaryocytes derived from primary human PMF progenitors. The ability of these agents to induce polyploidization was specific, as the non-megakaryocyte fractions of the cultures were not affected. Next, we assayed the activity of polyploidization inducers on progression of MPNs in two mouse models: JAK2V617F conditional knockin mice and mice engrafted with MPLW515L expressing bone marrow progenitors. Of note, spleens from both mouse models displayed a robust increase in both total and phosphorylated forms of AURKA relative to control animals, further suggesting that AURKA is a rational target in this disease. We first assayed the activities of MLN8237 and diMF in the MPLW515L bone marrow transplantation model. Recipient mice develop a rapid MPN characterized by leukocytosis, thrombocytosis and bone marrow fibrosis. Both MLN8237 and diMF reduced the disease burden, as evidenced by significant reductions in the liver and spleen weights, white cell counts and platelet counts. Both compounds also led to a significant decrease of fibrosis in the bone marrow, diminished infiltration of megakaryocytes and granulocytes in the liver, and a profound reduction in the numbers of megakaryocytes within the spleen. Moreover, plasma levels of TGF-β a known myelofibrogenic cytokine, were decreased by more than 3-fold by the drug treatment. Both diMF and MLN8237 led to selective polyploidization of megakaryocytes in the spleen as well as marked reductions in the levels of p-AURKA. Of note, neither agent affected the extent of phosphorylation of STAT3 or STAT5. Therefore, we tested whether the combined use of a JAK inhibitor and a polyploidy inducer would show enhanced activity in vivo. Indeed, the combination of MLN8237 and ruxolitinib led to greater reductions in tumor burden in the MPLW515L mouse model than either agent alone. Similar results were obtained using the JAK2V617F knock-in model. To further validate our conclusion that AURKA is a target in PMF, we infected Aurkafl/fl floxed bone marrow progenitors with MPLW515L and transplanted the cells to irradiated recipients. Excision of both alleles of Aurka by Cre mediated recombination completely resolved the disease, while heterozygous deletion of Aurka significantly reduced the disease burden, in a manner similar to treatment with MLN8237. Given that heterozygous deletion of Aurka does not alter normal hematopoiesis in mice, the fact that a 50% reduction in kinase expression was associated with a significant decrease in disease burden suggests that there is an effective therapeutic window in which AURKA inhibitors will be effective against MPN while sparing normal hematopoiesis. Although JAK inhibitors provide symptomatic relief, it is becoming clear that they are not curative. Thus, there is an urgent need to develop new agents to use in combination with JAK inhibitors. Our data reveal that inducing polyploidization and differentiation of dysplastic megakaryocytes in PMF ameliorates features of the disease both in vitro and in vivo. These results support the initiation of clinical studies that combine a JAK inhibitor with an AURKA inhibitor. Disclosures: Crispino: Sanofi: Research Funding.


2006 ◽  
Vol 17 (7) ◽  
pp. 3232-3241 ◽  
Author(s):  
Yasuhiko Terada

Heterochromatin protein 1 (HP1) plays an important role in heterochromatin formation and undergoes large-scale, progressive dissociation from heterochromatin in prophase cells. However, the mechanisms regulating the dynamic behavior of HP1 are poorly understood. In this study, the role of Aurora-B was investigated with respect to the dynamic behavior of HP1α. Mammalian Aurora-B, AIM-1, colocalizes with HP1α to the heterochromatin in G2. Depletion of Aurora-B/AIM-1 inhibited dissociation of HP1α from the chromosome arms at the G2–M transition. In addition, depletion of INCENP led to aberrant cellular localization of Aurora-B/AIM-1, but it did not affect heterochromatin targeting of HP1α. It was proposed in the binary switch hypothesis that phosphorylation of histone H3 at Ser-10 negatively regulates the binding of HP1α to the adjacent methylated Lys-9. However, Aurora-B/AIM-1-mediated phosphorylation of H3 induced dissociation of the HP1α chromodomain but not of the intact protein in vitro, indicating that the center and/or C-terminal domain of HP1α interferes with the effect of H3 phosphorylation on HP1α dissociation. Interestingly, Lys-9 methyltransferase SUV39H1 is abnormally localized together along the metaphase chromosome arms in Aurora-B/AIM-1–depleted cells. In conclusion, these results showed that Aurora-B/AIM-1 is necessary for regulated histone modifications involved in binding of HP1α by the N terminus of histone H3 during mitosis.


Blood ◽  
2010 ◽  
Vol 115 (25) ◽  
pp. 5202-5213 ◽  
Author(s):  
Güllü Görgün ◽  
Elisabetta Calabrese ◽  
Teru Hideshima ◽  
Jeffrey Ecsedy ◽  
Giulia Perrone ◽  
...  

Abstract Aurora-A is a mitotic kinase that regulates mitotic spindle formation and segregation. In multiple myeloma (MM), high Aurora-A gene expression has been correlated with centrosome amplification and proliferation; thus, inhibition of Aurora-A in MM may prove to be therapeutically beneficial. Here we assess the in vitro and in vivo anti-MM activity of MLN8237, a small-molecule Aurora-A kinase inhibitor. Treatment of cultured MM cells with MLN8237 results in mitotic spindle abnormalities, mitotic accumulation, as well as inhibition of cell proliferation through apoptosis and senescence. In addition, MLN8237 up-regulates p53 and tumor suppressor genes p21 and p27. Combining MLN8237 with dexamethasone, doxorubicin, or bortezomib induces synergistic/additive anti-MM activity in vitro. In vivo anti-MM activity of MLN8237 was confirmed using a xenograft-murine model of human-MM. Tumor burden was significantly reduced (P = .007) and overall survival was significantly increased (P < .005) in animals treated with 30 mg/kg MLN8237 for 21 days. Induction of apoptosis and cell death by MLN8237 were confirmed in tumor cells excised from treated animals by TdT-mediated dUTP nick end labeling assay. MLN8237 is currently in phase 1 and phase 2 clinical trials in patients with advanced malignancies, and our preclinical results suggest that MLN8237 may be a promising novel targeted therapy in MM.


2001 ◽  
Vol 153 (4) ◽  
pp. 865-880 ◽  
Author(s):  
Richard R. Adams ◽  
Helder Maiato ◽  
William C. Earnshaw ◽  
Mar Carmena

We have performed a biochemical and double-stranded RNA-mediated interference (RNAi) analysis of the role of two chromosomal passenger proteins, inner centromere protein (INCENP) and aurora B kinase, in cultured cells of Drosophila melanogaster. INCENP and aurora B function is tightly interlinked. The two proteins bind to each other in vitro, and DmINCENP is required for DmAurora B to localize properly in mitosis and function as a histone H3 kinase. DmAurora B is required for DmINCENP accumulation at centromeres and transfer to the spindle at anaphase. RNAi for either protein dramatically inhibited the ability of cells to achieve a normal metaphase chromosome alignment. Cells were not blocked in mitosis, however, and entered an aberrant anaphase characterized by defects in sister kinetochore disjunction and the presence of large amounts of amorphous lagging chromatin. Anaphase A chromosome movement appeared to be normal, however cytokinesis often failed. DmINCENP and DmAurora B are not required for the correct localization of the kinesin-like protein Pavarotti (ZEN-4/CHO1/MKLP1) to the midbody at telophase. These experiments reveal that INCENP is required for aurora B kinase function and confirm that the chromosomal passengers have essential roles in mitosis.


Sign in / Sign up

Export Citation Format

Share Document