scholarly journals Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells

2003 ◽  
Vol 162 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Yasuhiko Terada ◽  
Yumi Uetake ◽  
Ryoko Kuriyama

A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of γ-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with γ-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring γ-tubulin to the centrosome and organizing microtubule-nucleating sites via its interaction with the COOH-terminal sequence of CNN.


2010 ◽  
Vol 8 (3) ◽  
pp. 373-384 ◽  
Author(s):  
Jessica J. Huck ◽  
Mengkun Zhang ◽  
Alice McDonald ◽  
Doug Bowman ◽  
Kara M. Hoar ◽  
...  


2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 344-344
Author(s):  
Patricia Y. Akinfenwa ◽  
Nonna V. Kolomeyevskaya ◽  
Claire M. Mach ◽  
Zhen Li ◽  
Matthew L. Anderson


2005 ◽  
Vol 25 (4) ◽  
pp. 1309-1324 ◽  
Author(s):  
Joseph Rapley ◽  
Joanne E. Baxter ◽  
Joelle Blot ◽  
Samantha L. Wattam ◽  
Martina Casenghi ◽  
...  

ABSTRACT Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds γ-tubulin, is a G2/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with γ-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G2/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.



1999 ◽  
Vol 147 (3) ◽  
pp. 481-492 ◽  
Author(s):  
Aruna Purohit ◽  
Sharon H. Tynan ◽  
Richard Vallee ◽  
Stephen J. Doxsey

Pericentrin is a conserved protein of the centrosome involved in microtubule organization. To better understand pericentrin function, we overexpressed the protein in somatic cells and assayed for changes in the composition and function of mitotic spindles and spindle poles. Spindles in pericentrin-overexpressing cells were disorganized and mispositioned, and chromosomes were misaligned and missegregated during cell division, giving rise to aneuploid cells. We unexpectedly found that levels of the molecular motor cytoplasmic dynein were dramatically reduced at spindle poles. Cytoplasmic dynein was diminished at kinetochores also, and the dynein-mediated organization of the Golgi complex was disrupted. Dynein coimmunoprecipitated with overexpressed pericentrin, suggesting that the motor was sequestered in the cytoplasm and was prevented from associating with its cellular targets. Immunoprecipitation of endogenous pericentrin also pulled down cytoplasmic dynein in untransfected cells. To define the basis for this interaction, pericentrin was coexpressed with cytoplasmic dynein heavy (DHCs), intermediate (DICs), and light intermediate (LICs) chains, and the dynamitin and p150Glued subunits of dynactin. Only the LICs coimmunoprecipitated with pericentrin. These results provide the first physiological role for LIC, and they suggest that a pericentrin–dynein interaction in vivo contributes to the assembly, organization, and function of centrosomes and mitotic spindles.



2007 ◽  
Vol 176 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Terry Lechler ◽  
Elaine Fuchs

Despite their importance in cell shape and polarity generation, the organization of microtubules in differentiated cells and tissues remains relatively unexplored in mammals. We generated transgenic mice in which the epidermis expresses a fluorescently labeled microtubule-binding protein and show that in epidermis and in cultured keratinocytes, microtubules stereotypically reorganize as they differentiate. In basal cells, microtubules form a cytoplasmic network emanating from an apical centrosome. In suprabasal cells, microtubules concentrate at cell–cell junctions. The centrosome retains its ability to nucleate microtubules in differentiated cells, but no longer anchors them. During epidermal differentiation, ninein, which is a centrosomal protein required for microtubule anchoring (Dammermann, A., and A. Merdes. 2002. J. Cell Biol. 159:255–266; Delgehyr, N., J. Sillibourne, and M. Bornens. 2005. J. Cell Sci. 118:1565–1575; Mogensen, M.M., A. Malik, M. Piel, V. Bouckson-Castaing, and M. Bornens. 2000. J. Cell Sci. 113:3013–3023), is lost from the centrosome and is recruited to desmosomes by desmoplakin (DP). Loss of DP prevents accumulation of cortical microtubules in vivo and in vitro. Our work uncovers a differentiation-specific rearrangement of the microtubule cytoskeleton in epidermis, and defines an essential role for DP in the process.



2008 ◽  
Vol 182 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Alexander W. Bird ◽  
Anthony A. Hyman

To assemble mitotic spindles, cells nucleate microtubules from a variety of sources including chromosomes and centrosomes. We know little about how the regulation of microtubule nucleation contributes to spindle bipolarity and spindle size. The Aurora A kinase activator TPX2 is required for microtubule nucleation from chromosomes as well as for spindle bipolarity. We use bacterial artificial chromosome–based recombineering to introduce point mutants that block the interaction between TPX2 and Aurora A into human cells. TPX2 mutants have very short spindles but, surprisingly, are still bipolar and segregate chromosomes. Examination of microtubule nucleation during spindle assembly shows that microtubules fail to nucleate from chromosomes. Thus, chromosome nucleation is not essential for bipolarity during human cell mitosis when centrosomes are present. Rather, chromosome nucleation is involved in spindle pole separation and setting spindle length. A second Aurora A–independent function of TPX2 is required to bipolarize spindles.



2003 ◽  
Vol 162 (6) ◽  
pp. 1017-1029 ◽  
Author(s):  
Tim Raemaekers ◽  
Katharina Ribbeck ◽  
Joël Beaudouin ◽  
Wim Annaert ◽  
Mark Van Camp ◽  
...  

Here, we report on the identification of nucleolar spindle–associated protein (NuSAP), a novel 55-kD vertebrate protein with selective expression in proliferating cells. Its mRNA and protein levels peak at the transition of G2 to mitosis and abruptly decline after cell division. Microscopic analysis of both fixed and live mammalian cells showed that NuSAP is primarily nucleolar in interphase, and localizes prominently to central spindle microtubules during mitosis. Direct interaction of NuSAP with microtubules was demonstrated in vitro. Overexpression of NuSAP caused profound bundling of cytoplasmic microtubules in interphase cells, and this relied on a COOH-terminal microtubule-binding domain. In contrast, depletion of NuSAP by RNA interference resulted in aberrant mitotic spindles, defective chromosome segregation, and cytokinesis. In addition, many NuSAP-depleted interphase cells had deformed nuclei. Both overexpression and knockdown of NuSAP impaired cell proliferation. These results suggest a crucial role for NuSAP in spindle microtubule organization.



Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 109-109 ◽  
Author(s):  
Qiang Jeremy Wen ◽  
Benjamin Goldenson ◽  
Sebastien Malinge ◽  
Brady L Stein ◽  
Terra L Lasho ◽  
...  

Abstract We recently reported that the induction of polyploidization of malignant megakaryocytes shows great promise as a new therapy for acute leukemia. Polyploidization inducers such as dimethylfasudil (diMF) and MLN8237, both of which target Aurora A kinase (AURKA), induce proliferation arrest, polyploidization, expression of megakaryocyte differentiation markers and apoptosis of leukemic megakaryocytes in vitro and in vivo. Since megakaryocytes in primary myelofibrosis (PMF) show impaired polyploidization and maturation, and likely directly contribute to the disease, we predicted that polyploidization inducers would provide a new therapeutic strategy. To determine the effect of these compounds on the growth of MPN cells, we first treated the JAK2 V617F mutant megakaryocytic SET2 cell line with varying doses of MLN8237 and diMF. Both compounds effectively and dose dependently inhibited proliferation, induced polyploidization and upregulation of lineage specific markers CD41 and CD42, and increased apoptosis. Furthermore, MLN8237 synergized with ruxolitinib to induce apoptosis of the SET2 cells and also potently induced growth arrest of JAK2 inhibitor persistent SET2 cells. We observed a similar polyploidization and differentiating activity of MLN8237 and diMF on megakaryocytes derived from primary human PMF progenitors. The ability of these agents to induce polyploidization was specific, as the non-megakaryocyte fractions of the cultures were not affected. Next, we assayed the activity of polyploidization inducers on progression of MPNs in two mouse models: JAK2V617F conditional knockin mice and mice engrafted with MPLW515L expressing bone marrow progenitors. Of note, spleens from both mouse models displayed a robust increase in both total and phosphorylated forms of AURKA relative to control animals, further suggesting that AURKA is a rational target in this disease. We first assayed the activities of MLN8237 and diMF in the MPLW515L bone marrow transplantation model. Recipient mice develop a rapid MPN characterized by leukocytosis, thrombocytosis and bone marrow fibrosis. Both MLN8237 and diMF reduced the disease burden, as evidenced by significant reductions in the liver and spleen weights, white cell counts and platelet counts. Both compounds also led to a significant decrease of fibrosis in the bone marrow, diminished infiltration of megakaryocytes and granulocytes in the liver, and a profound reduction in the numbers of megakaryocytes within the spleen. Moreover, plasma levels of TGF-β a known myelofibrogenic cytokine, were decreased by more than 3-fold by the drug treatment. Both diMF and MLN8237 led to selective polyploidization of megakaryocytes in the spleen as well as marked reductions in the levels of p-AURKA. Of note, neither agent affected the extent of phosphorylation of STAT3 or STAT5. Therefore, we tested whether the combined use of a JAK inhibitor and a polyploidy inducer would show enhanced activity in vivo. Indeed, the combination of MLN8237 and ruxolitinib led to greater reductions in tumor burden in the MPLW515L mouse model than either agent alone. Similar results were obtained using the JAK2V617F knock-in model. To further validate our conclusion that AURKA is a target in PMF, we infected Aurkafl/fl floxed bone marrow progenitors with MPLW515L and transplanted the cells to irradiated recipients. Excision of both alleles of Aurka by Cre mediated recombination completely resolved the disease, while heterozygous deletion of Aurka significantly reduced the disease burden, in a manner similar to treatment with MLN8237. Given that heterozygous deletion of Aurka does not alter normal hematopoiesis in mice, the fact that a 50% reduction in kinase expression was associated with a significant decrease in disease burden suggests that there is an effective therapeutic window in which AURKA inhibitors will be effective against MPN while sparing normal hematopoiesis. Although JAK inhibitors provide symptomatic relief, it is becoming clear that they are not curative. Thus, there is an urgent need to develop new agents to use in combination with JAK inhibitors. Our data reveal that inducing polyploidization and differentiation of dysplastic megakaryocytes in PMF ameliorates features of the disease both in vitro and in vivo. These results support the initiation of clinical studies that combine a JAK inhibitor with an AURKA inhibitor. Disclosures: Crispino: Sanofi: Research Funding.



2001 ◽  
Vol 153 (4) ◽  
pp. 637-648 ◽  
Author(s):  
James G. Wakefield ◽  
Silvia Bonaccorsi ◽  
Maurizio Gatti

Abnormal spindle (Asp) is a 220-kD microtubule-associated protein from Drosophila that has been suggested to be involved in microtubule nucleation from the centrosome. Here, we show that Asp is enriched at the poles of meiotic and mitotic spindles and localizes to the minus ends of central spindle microtubules. Localization to these structures is independent of a functional centrosome. Moreover, colchicine treatment disrupts Asp localization to the centrosome, indicating that Asp is not an integral centrosomal protein. In both meiotic and mitotic divisions of asp mutants, microtubule nucleation occurs from the centrosome, and γ-tubulin localizes correctly. However, spindle pole focusing and organization are severely affected. By examining cells that carry mutations both in asp and in asterless, a gene required for centrosome function, we have determined the role of Asp in the absence of centrosomes. Phenotypic analysis of these double mutants shows that Asp is required for the aggregation of microtubules into focused spindle poles, reinforcing the conclusion that its function at the spindle poles is independent of any putative role in microtubule nucleation. Our data also suggest that Asp has a role in the formation of the central spindle. The inability of asp mutants to correctly organize the central spindle leads to disruption of the contractile ring machinery and failure in cytokinesis.



Blood ◽  
2010 ◽  
Vol 115 (25) ◽  
pp. 5202-5213 ◽  
Author(s):  
Güllü Görgün ◽  
Elisabetta Calabrese ◽  
Teru Hideshima ◽  
Jeffrey Ecsedy ◽  
Giulia Perrone ◽  
...  

Abstract Aurora-A is a mitotic kinase that regulates mitotic spindle formation and segregation. In multiple myeloma (MM), high Aurora-A gene expression has been correlated with centrosome amplification and proliferation; thus, inhibition of Aurora-A in MM may prove to be therapeutically beneficial. Here we assess the in vitro and in vivo anti-MM activity of MLN8237, a small-molecule Aurora-A kinase inhibitor. Treatment of cultured MM cells with MLN8237 results in mitotic spindle abnormalities, mitotic accumulation, as well as inhibition of cell proliferation through apoptosis and senescence. In addition, MLN8237 up-regulates p53 and tumor suppressor genes p21 and p27. Combining MLN8237 with dexamethasone, doxorubicin, or bortezomib induces synergistic/additive anti-MM activity in vitro. In vivo anti-MM activity of MLN8237 was confirmed using a xenograft-murine model of human-MM. Tumor burden was significantly reduced (P = .007) and overall survival was significantly increased (P < .005) in animals treated with 30 mg/kg MLN8237 for 21 days. Induction of apoptosis and cell death by MLN8237 were confirmed in tumor cells excised from treated animals by TdT-mediated dUTP nick end labeling assay. MLN8237 is currently in phase 1 and phase 2 clinical trials in patients with advanced malignancies, and our preclinical results suggest that MLN8237 may be a promising novel targeted therapy in MM.



Sign in / Sign up

Export Citation Format

Share Document