scholarly journals Autoregulation in the Biosynthesis of Ribosomes

2003 ◽  
Vol 23 (2) ◽  
pp. 699-707 ◽  
Author(s):  
Yu Zhao ◽  
Jung-Hoon Sohn ◽  
Jonathan R. Warner

ABSTRACT The synthesis of ribosomes in Saccharomyces cerevisiae consumes a prodigious amount of the cell's resources and, consequently, is tightly regulated. The rate of ribosome synthesis responds not only to nutritional cues but also to signals dependent on other macromolecular pathways of the cell, e.g., a defect in the secretory pathway leads to severe repression of transcription of both rRNA and ribosomal protein genes. A search for mutants that interrupted this repression revealed, surprisingly, that inactivation of RPL1B, one of a pair of genes encoding the 60S ribosomal protein L1, almost completely blocked the repression of rRNA and ribosomal protein gene transcription that usually follows a defect in the secretory pathway. Further experiments showed that almost any mutation leading to a defect in 60S subunit synthesis had the same effect, whereas mutations affecting 40S subunit synthesis did not. Although one might suspect that this effect would be due to a decrease in the initiation of translation or to the presence of half-mers, i.e., polyribosomes awaiting a 60S subunit, our data show that this is not the case. Rather, a variety of experiments suggest that some aspect of the production of defective 60S particles or, more likely, their breakdown suppresses the signal generated by a defect in the secretory pathway that represses ribosome synthesis.

1991 ◽  
Vol 11 (5) ◽  
pp. 2723-2735 ◽  
Author(s):  
C M Moehle ◽  
A G Hinnebusch

An amino acid limitation in bacteria elicits a global response, called stringent control, that leads to reduced synthesis of rRNA and ribosomal proteins and increased expression of amino acid biosynthetic operons. We have used the antimetabolite 3-amino-1,2,4-triazole to cause histidine limitation as a means to elicit the stringent response in the yeast Saccharomyces cerevisiae. Fusions of the yeast ribosomal protein genes RPL16A, CRY1, RPS16A, and RPL25 with the Escherichia coli lacZ gene were used to show that the expression of these genes is reduced by a factor of 2 to 5 during histidine-limited exponential growth and that this regulation occurs at the level of transcription. Stringent regulation of the four yeast ribosomal protein genes was shown to be associated with a nucleotide sequence, known as the UASrpg (upstream activating sequence for ribosomal protein genes), that binds the transcriptional regulatory protein RAP1. The RAP1 binding sites also appeared to mediate the greater ribosomal protein gene expression observed in cells growing exponentially than in cells in stationary phase. Although expression of the ribosomal protein genes was reduced in response to histidine limitation, the level of RAP1 DNA-binding activity in cell extracts was unaffected. Yeast strains bearing a mutation in any one of the genes GCN1 to GCN4 are defective in derepression of amino acid biosynthetic genes in 10 different pathways under conditions of histidine limitation. These Gcn- mutants showed wild-type regulation of ribosomal protein gene expression, which suggests that separate regulatory pathways exist in S. cerevisiae for the derepression of amino acid biosynthetic genes and the repression of ribosomal protein genes in response to amino acid starvation.


1991 ◽  
Vol 11 (5) ◽  
pp. 2723-2735 ◽  
Author(s):  
C M Moehle ◽  
A G Hinnebusch

An amino acid limitation in bacteria elicits a global response, called stringent control, that leads to reduced synthesis of rRNA and ribosomal proteins and increased expression of amino acid biosynthetic operons. We have used the antimetabolite 3-amino-1,2,4-triazole to cause histidine limitation as a means to elicit the stringent response in the yeast Saccharomyces cerevisiae. Fusions of the yeast ribosomal protein genes RPL16A, CRY1, RPS16A, and RPL25 with the Escherichia coli lacZ gene were used to show that the expression of these genes is reduced by a factor of 2 to 5 during histidine-limited exponential growth and that this regulation occurs at the level of transcription. Stringent regulation of the four yeast ribosomal protein genes was shown to be associated with a nucleotide sequence, known as the UASrpg (upstream activating sequence for ribosomal protein genes), that binds the transcriptional regulatory protein RAP1. The RAP1 binding sites also appeared to mediate the greater ribosomal protein gene expression observed in cells growing exponentially than in cells in stationary phase. Although expression of the ribosomal protein genes was reduced in response to histidine limitation, the level of RAP1 DNA-binding activity in cell extracts was unaffected. Yeast strains bearing a mutation in any one of the genes GCN1 to GCN4 are defective in derepression of amino acid biosynthetic genes in 10 different pathways under conditions of histidine limitation. These Gcn- mutants showed wild-type regulation of ribosomal protein gene expression, which suggests that separate regulatory pathways exist in S. cerevisiae for the derepression of amino acid biosynthetic genes and the repression of ribosomal protein genes in response to amino acid starvation.


1995 ◽  
Vol 15 (6) ◽  
pp. 3187-3196 ◽  
Author(s):  
F S Neuman-Silberberg ◽  
S Bhattacharya ◽  
J R Broach

By differential hybridization, we identified a number of genes in Saccharomyces cerevisiae that are activated by addition of cyclic AMP (cAMP) to cAMP-depleted cells. A majority, but not all, of these genes encode ribosomal proteins. While expression of these genes is also induced by addition of the appropriate nutrient to cells starved for a nitrogen source or for a sulfur source, the pathway for nutrient activation of ribosomal protein gene transcription is distinct from that of cAMP activation: (i) cAMP-mediated transcriptional activation was blocked by prior addition of an inhibitor of protein synthesis whereas nutrient-mediated activation was not, and (ii) cAMP-mediated induction of expression occurred through transcriptional activation whereas nutrient-mediated induction was predominantly a posttranscriptional response. Transcriptional activation of the ribosomal protein gene RPL16A by cAMP is mediated through a upstream activation sequence element consisting of a pair of RAP1 binding sites and sequences between them, suggesting that RAP1 participates in the cAMP activation process. Since RAP1 protein decays during starvation for cAMP, regulation of ribosomal protein genes under these conditions may directly relate to RAP1 protein availability. These results define additional critical targets of the cAMP-dependent protein kinase, suggest a mechanism to couple ribosome production to the metabolic activity of the cell, and emphasize that nutrient regulation is independent of the RAS/cAMP pathway.


Blood ◽  
2011 ◽  
Vol 118 (26) ◽  
pp. 6943-6951 ◽  
Author(s):  
Jason E. Farrar ◽  
Adrianna Vlachos ◽  
Eva Atsidaftos ◽  
Hannah Carlson-Donohoe ◽  
Thomas C. Markello ◽  
...  

Abstract Diamond-Blackfan anemia (DBA) is a congenital BM failure syndrome characterized by hypoproliferative anemia, associated physical abnormalities, and a predisposition to cancer. Perturbations of the ribosome appear to be critically important in DBA; alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, at present, only 50% to 60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide single-nucleotide polymorphism array to evaluate for regions of recurrent copy variation, we identified deletions at known DBA-related ribosomal protein gene loci in 17% (9 of 51) of patients without an identifiable mutation, including RPS19, RPS17, RPS26, and RPL35A. No recurrent regions of copy variation at novel loci were identified. Because RPS17 is a duplicated gene with 4 copies in a diploid genome, we demonstrate haploinsufficient RPS17 expression and a small subunit ribosomal RNA processing abnormality in patients harboring RPS17 deletions. Finally, we report the novel identification of variable mosaic loss involving known DBA gene regions in 3 patients from 2 kindreds. These data suggest that ribosomal protein gene deletion is more common than previously suspected and should be considered a component of the initial genetic evaluation in cases of suspected DBA.


1988 ◽  
Vol 8 (10) ◽  
pp. 4328-4341 ◽  
Author(s):  
K G Hamil ◽  
H G Nam ◽  
H M Fried

The DNA sequence UAST (TCGTTTTGTACGTTTTTCA) was found to mediate transcription of yeast ribosomal protein gene TCM1. UAST was defined as a transcriptional activator on the basis of loss of transcription accompanying deletions of all or part of UAST, orientation-independent restoration of transcription promoted by a synthetic UAST oligomer inserted either into TCM1 or into the yeast CYC1 gene lacking its transcriptional activation region, and diminished transcription following nucleotide alterations in UAST. UAST bound in vitro to a protein denoted TAF (TCM1 activation factor); TAF was concluded to be a transcriptional activator protein because nucleotide alterations in UAST that diminished transcription in vivo also diminished TAF binding in vitro. The sequence of UAST bore no obvious resemblance to UASrpg, the principal cis-acting element common to most yeast ribosomal protein genes. Likewise, TAF was distinguished from the UASrpg-binding protein TUF, since (i) TAF and TUF were chromatographically separable, (ii) binding of either TAF or TUF to its corresponding UAS was unaffected by an excess of UASrpg or UAST DNA, respectively, and (iii) photochemical cross-linking experiments showed that TAF was a protein of 147 kilodaltons (kDa), while TUF was detected as an approximately 120-kDa polypeptide, consistent with its known size. Cross-linking experiments also revealed that both UAST and UASrpg bound a second heretofore unobserved 82-kDa protein; binding of this additional protein appeared to require binding of TAF or TUF. On the basis of the biochemical characterization of TAF and a lack of sequence similarity between UAST and UASrpg, we suggest that transcription of TCM1 is mediated by a cis-acting sequence and at least one trans-acting factor different from the elements which promote transcription of most other ribosomal protein genes. A second trans-acting factor may be shared by TCM1 and other ribosomal protein genes; this factor could mediate coordinate regulation of these genes.


1988 ◽  
Vol 8 (10) ◽  
pp. 4314-4321
Author(s):  
S J Brown ◽  
D D Rhoads ◽  
M J Stewart ◽  
B Van Slyke ◽  
I T Chen ◽  
...  

We describe a Drosophila DNA clone of tandemly duplicated genes encoding an amino acid sequence nearly identical to human ribosomal protein S14 and yeast rp59. Despite their remarkably similar exons, the locations and sizes of introns differ radically among the Drosophila, human, and yeast (Saccharomyces cerevisiae) ribosomal protein genes. Transcripts of both Drosophila RPS14 genes were detected in embryonic and adult tissues and are the same length as mammalian S14 message. Drosophila RPS14 was mapped to region 7C5-9 on the X chromosome. This interval also encodes a previously characterized Minute locus, M(1)7C.


2015 ◽  
Vol 35 (17) ◽  
pp. 2947-2964 ◽  
Author(s):  
Bhawana Uprety ◽  
Rwik Sen ◽  
Sukesh R. Bhaumik

NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such asRPS5,RPL2B, andRPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in aΔeaf1strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiationin vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions.


1990 ◽  
Vol 10 (6) ◽  
pp. 3284-3288
Author(s):  
D Perelman ◽  
J C Boothroyd

Introns are almost always present in ribosomal protein genes, even in organisms in which introns are rare. Although trans spliced, the trypanosome ribosomal protein gene S14 apparently does not have cis introns, which supports the notion that such introns are absent in this organism.


1988 ◽  
Vol 8 (10) ◽  
pp. 4314-4321 ◽  
Author(s):  
S J Brown ◽  
D D Rhoads ◽  
M J Stewart ◽  
B Van Slyke ◽  
I T Chen ◽  
...  

We describe a Drosophila DNA clone of tandemly duplicated genes encoding an amino acid sequence nearly identical to human ribosomal protein S14 and yeast rp59. Despite their remarkably similar exons, the locations and sizes of introns differ radically among the Drosophila, human, and yeast (Saccharomyces cerevisiae) ribosomal protein genes. Transcripts of both Drosophila RPS14 genes were detected in embryonic and adult tissues and are the same length as mammalian S14 message. Drosophila RPS14 was mapped to region 7C5-9 on the X chromosome. This interval also encodes a previously characterized Minute locus, M(1)7C.


Sign in / Sign up

Export Citation Format

Share Document