scholarly journals Snail Mediates E-Cadherin Repression by the Recruitment of the Sin3A/Histone Deacetylase 1 (HDAC1)/HDAC2 Complex

2004 ◽  
Vol 24 (1) ◽  
pp. 306-319 ◽  
Author(s):  
Hector Peinado ◽  
Esteban Ballestar ◽  
Manel Esteller ◽  
Amparo Cano

ABSTRACT The transcription factor Snail has been described as a direct repressor of E-cadherin expression during development and carcinogenesis; however, the specific mechanisms involved in this process remain largely unknown. Here we show that mammalian Snail requires histone deacetylase (HDAC) activity to repress E-cadherin promoter and that treatment with trichostatin A (TSA) is sufficient to block the repressor effect of Snail. Moreover, overexpression of Snail is correlated with deacetylation of histones H3 and H4 at the E-cadherin promoter, and TSA treatment in Snail-expressing cells reverses the acetylation status of histones. Additionally, we demonstrate that Snail interacts in vivo with the E-cadherin promoter and recruits HDAC activity. Most importantly, we demonstrate an interaction between Snail, histone deacetylase 1 (HDAC1) and HDAC2, and the corepressor mSin3A. This interaction is dependent on the SNAG domain of Snail, indicating that the Snail transcription factor mediates the repression by recruitment of chromatin-modifying activities, forming a multimolecular complex to repress E-cadherin expression. Our results establish a direct causal relationship between Snail-dependent repression of E-cadherin and the modification of chromatin at its promoter.

1999 ◽  
Vol 19 (8) ◽  
pp. 5504-5511 ◽  
Author(s):  
Angelika Doetzlhofer ◽  
Hans Rotheneder ◽  
Gerda Lagger ◽  
Manfred Koranda ◽  
Vladislav Kurtev ◽  
...  

ABSTRACT The members of the Sp1 transcription factor family can act as both negative and positive regulators of gene expression. Here we show that Sp1 can be a target for histone deacetylase 1 (HDAC1)-mediated transcriptional repression. The histone deacetylase inhibitor trichostatin A activates the chromosomally integrated murine thymidine kinase promoter in an Sp1-dependent manner. Coimmunoprecipitation experiments with Swiss 3T3 fibroblasts and 293 cells demonstrate that Sp1 and HDAC1 can be part of the same complex. The interaction between Sp1 and HDAC1 is direct and requires the carboxy-terminal domain of Sp1. Previously we have shown that the C terminus of Sp1 is necessary for the interaction with the transcription factor E2F1 (J. Karlseder, H. Rotheneder, and E. Wintersberger, Mol. Cell. Biol. 16:1659–1667, 1996). Coexpression of E2F1 interferes with HDAC1 binding to Sp1 and abolishes Sp1-mediated transcriptional repression. Our results indicate that one component of Sp1-dependent gene regulation involves competition between the transcriptional repressor HDAC1 and the transactivating factor E2F1.


2020 ◽  
Vol 21 (22) ◽  
pp. 8460
Author(s):  
Min Young Kim ◽  
Bowen Yan ◽  
Suming Huang ◽  
Yi Qiu

Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.


1999 ◽  
Vol 73 (7) ◽  
pp. 5688-5697 ◽  
Author(s):  
Stoyan A. Radkov ◽  
Robert Touitou ◽  
Alex Brehm ◽  
Martin Rowe ◽  
Michelle West ◽  
...  

ABSTRACT EBNA3C can specifically repress the expression of reporter plasmids containing EBV Cp latency-associated promoter elements. Cp is normally the main promoter for EBNA mRNA initiation, so it appears that EBNA3C contributes to a negative autoregulatory control loop. By mutational analysis it was previously established that this repression is consistent with EBNA3C being targeted to Cp by binding the cellular sequence-specific DNA-binding protein CBF1 (also known as recombination signal-binding protein [RBP]-Jκ. Further analysis suggested that in vivo a corepressor interacts with EBNA3C in this DNA binding complex. Results presented here are all consistent with a component of such a corepressor exhibiting histone deacetylase activity. The drug trichostatin A, which specifically inhibits histone deacetylases, relieved two- to threefold the repression of Cp induced by EBNA3C in two different cell types. Moreover, repression of pTK-CAT-Cp4× by EBNA3C was specifically enhanced by cotransfection of an expression plasmid for human histone deacetylase-1 (HDAC1). Consistent with these functional assays, in vitro-translated HDAC1 bound to a glutathioneS-transferase (GST) fusion protein including full-length EBNA3C, and in the reciprocal experiment EBNA3C bound to a GST fusion with the N terminus of HDAC1. Coimmunoprecipitations also revealed an EBNA3C-HDAC1 interaction in vivo, and GST-EBNA3C bound functional histone deacetylase enzyme activity from HeLa cell nuclear extracts. The region of EBNA3C involved in the interaction with HDAC1 appears to correspond to the region which is necessary for binding to CBF1/RBP-Jκ. A direct physical interaction between EBNA3C and HDAC1 was demonstrated with recombinant proteins purified from bacterial cells, and we therefore conclude that HDAC1 and CBF1/RBP-Jκ bind to the same or adjacent regions of EBNA3C. These data suggest that recruitment of histone deacetylase activity makes a significant contribution to the repression of transcription from Cp because EBNA3C bridges an interaction between CBF1/RBP-Jκ and HDAC1.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Nan Huang ◽  
Chang Xu ◽  
Liang Deng ◽  
Xue Li ◽  
Zhixuan Bian ◽  
...  

AbstractPhosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.


2005 ◽  
Vol 25 (19) ◽  
pp. 8456-8464 ◽  
Author(s):  
Xuan Zhao ◽  
Thomas Sternsdorf ◽  
Timothy A. Bolger ◽  
Ronald M. Evans ◽  
Tso-Pang Yao

ABSTRACT The class II deacetylase histone deacetylase 4 (HDAC4) negatively regulates the transcription factor MEF2. HDAC4 is believed to repress MEF2 transcriptional activity by binding to MEF2 and catalyzing local histone deacetylation. Here we report that HDAC4 also controls MEF2 by a novel SUMO E3 ligase activity. We show that HDAC4 interacts with the SUMO E2 conjugating enzyme Ubc9 and is itself sumoylated. The overexpression of HDAC4 leads to prominent MEF2 sumoylation in vivo, whereas recombinant HDAC4 stimulates MEF2 sumoylation in a reconstituted system in vitro. Importantly, HDAC4 promotes sumoylation on a lysine residue that is also subject to acetylation by a MEF2 coactivator, the acetyltransferase CBP, suggesting a possible interplay between acetylation and sumoylation in regulating MEF2 activity. Indeed, MEF2 acetylation is correlated with MEF2 activation and dynamically induced upon muscle cell differentiation, while sumoylation inhibits MEF2 transcriptional activity. Unexpectedly, we found that HDAC4 does not function as a MEF2 deacetylase. Instead, the NAD+-dependent deacetylase SIRT1 can potently induce MEF2 deacetylation. Our studies reveal a novel regulation of MEF2 transcriptional activity by two distinct classes of deacetylases that affect MEF2 sumoylation and acetylation.


2001 ◽  
Vol 21 (9) ◽  
pp. 3118-3125 ◽  
Author(s):  
Xiaoyong Chen ◽  
James J. Bieker

ABSTRACT The erythroid cell-specific transcription factor erythroid Krüppel-like factor (EKLF) is an important activator of β-globin gene expression. It achieves this by binding to the CACCC element at the β-globin promoter via its zinc finger domain. The coactivators CBP and P300 interact with, acetylate, and enhance its activity, helping to explain its role as a transcription activator. Here we show that EKLF can also interact with the corepressors mSin3A and HDAC1 (histone deacetylase 1) through its zinc finger domain. When linked to a GAL4 DNA binding domain, full-length EKLF or its zinc finger domain alone can repress transcription in vivo. This repressive activity can be relieved by the HDAC inhibitor trichostatin A. Although recruitment of EKLF to a promoter is required to show repression, its zinc finger domain cannot bind directly to DNA and repress transcription simultaneously. In addition, the target promoter configuration is important for enabling EKLF to exhibit any repressive activity. These results suggest that EKLF may function in vivo as a transcription repressor and play a previously unsuspected additional role in regulating erythroid gene expression and differentiation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Skye Hsin-Hsien Yeh ◽  
Ming Hsien Lin ◽  
I. I. Leo Garcia Flores ◽  
Uday Mukhopadhyay ◽  
Danial Young ◽  
...  

Combining standard drugs with low doses of histone deacetylase inhibitors (HDACIs) is a promising strategy to increase the efficacy of chemotherapy. The ability of well-tolerated doses of HDACIs that act as chemosensitizers for platinum-based chemotherapeutics has recently been proven in many types and stages of cancer in vitro and in vivo. Detection of changes in HDAC activity/expression may provide important prognostic and predictive information and influence treatment decision-making. Use of [18F] FAHA, a HDAC IIa-specific radionuclide, for molecular imaging may enable longitudinal, noninvasive assessment of HDAC activity/expression in metastatic cancer. We evaluated the synergistic anticancer effects of cisplatin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in xenograft models of nonsmall cell lung cancer (NSCLC) using [18F] FAHA and [18F] FDG PET/CT imaging. Cisplatin alone significantly increased [18F] FAHA accumulation and reduced [18F] FDG accumulation in H441 and PC14 xenografts; coadministration of cisplatin and SAHA resulted in the opposite effects. Immunochemical staining for acetyl-histone H3 confirmed the PET/CT imaging findings. Moreover, SAHA had a more significant effect on the acetylome in PC14 (EGFR exon 19 deletion mutation) xenografts than H441 (wild-type EGFR and KRAS codon 12 mutant) xenografts. In conclusion, [18F] FAHA enables quantitative visualization of HDAC activity/expression in vivo, thus, may represent a clinically useful, noninvasive tool for the management of patients who may benefit from synergistic anticancer therapy.


2019 ◽  
Vol 93 (12) ◽  
Author(s):  
Bratati Saha ◽  
Robin J. Parks

ABSTRACTHuman adenovirus (HAdV) causes minor illnesses in most patients but can lead to severe disease and death in pediatric, geriatric, and immunocompromised individuals. No approved antiviral therapy currently exists for the treatment of these severe HAdV-induced diseases. In this study, we show that the pan-histone deacetylase (HDAC) inhibitor SAHA reduces HAdV-5 gene expression and DNA replication in tissue culture, ultimately decreasing virus yield from infected cells. Importantly, SAHA also reduced gene expression from more virulent and clinically relevant serotypes, including HAdV-4 and HAdV-7. In addition to SAHA, several other HDAC inhibitors (e.g., trichostatin A, apicidin, and panobinostat) also affected HAdV gene expression. We determined that loss of class I HDAC activity, mainly HDAC2, impairs efficient expression of viral genes, and that E1A physically interacts with HDAC2. Our results suggest that HDAC activity is necessary for HAdV replication, which may represent a novel pharmacological target in HAdV-induced disease.IMPORTANCEAlthough human adenovirus (HAdV) can cause severe diseases that can be fatal in some populations, there are no effective treatments to combat HAdV infection. In this study, we determined that the pan-histone deacetylase (HDAC) inhibitor SAHA has inhibitory activity against several clinically relevant serotypes of HAdV. This U.S. Food and Drug Administration-approved compound affects various stages of the virus lifecycle and reduces virus yield even at low concentrations. We further report that class I HDAC activity, particularly HDAC2, is required for efficient expression of viral genes during lytic infection. Investigation of the mechanism underlying SAHA-mediated suppression of HAdV gene expression and replication will enhance current knowledge of virus-cell interaction and may aid in the development of more effective antivirals with lower toxicity for the treatment of HAdV infections.


Sign in / Sign up

Export Citation Format

Share Document