scholarly journals Myristic acid is attached to the transforming protein of Rous sarcoma virus during or immediately after synthesis and is present in both soluble and membrane-bound forms of the protein.

1984 ◽  
Vol 4 (12) ◽  
pp. 2697-2704 ◽  
Author(s):  
J E Buss ◽  
M P Kamps ◽  
B M Sefton

Myristic acid, a minor component of cellular fatty acids, has been shown previously to be covalently bound to most molecules of p60src, the transforming protein of Rous sarcoma virus. We have now determined at what time during the life cycle of p60src, and where within the cell, this lipid becomes attached to the protein. p60src was found to acquire myristic acid at only one time, during or immediately after its synthesis. p60src is known to be synthesized on free polysomes and appears at the cytoplasmic face of the plasma membrane after a lag of 10 min. The addition of myristic acid to p60src therefore precedes the binding of the protein to the plasma membrane. The lipid attached to p60src is a permanent, metabolically stable part of the protein; we found no evidence for turnover of the myristyl moiety. However, we did find myristate attached to various soluble forms of p60src and to a large number of cytosolic cellular proteins as well. This demonstrates that the attachment of myristic acid to a protein is not in itself sufficient to convert a soluble protein into a membrane-bound protein.

1984 ◽  
Vol 4 (12) ◽  
pp. 2697-2704
Author(s):  
J E Buss ◽  
M P Kamps ◽  
B M Sefton

Myristic acid, a minor component of cellular fatty acids, has been shown previously to be covalently bound to most molecules of p60src, the transforming protein of Rous sarcoma virus. We have now determined at what time during the life cycle of p60src, and where within the cell, this lipid becomes attached to the protein. p60src was found to acquire myristic acid at only one time, during or immediately after its synthesis. p60src is known to be synthesized on free polysomes and appears at the cytoplasmic face of the plasma membrane after a lag of 10 min. The addition of myristic acid to p60src therefore precedes the binding of the protein to the plasma membrane. The lipid attached to p60src is a permanent, metabolically stable part of the protein; we found no evidence for turnover of the myristyl moiety. However, we did find myristate attached to various soluble forms of p60src and to a large number of cytosolic cellular proteins as well. This demonstrates that the attachment of myristic acid to a protein is not in itself sufficient to convert a soluble protein into a membrane-bound protein.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rebecca J. Kaddis Maldonado ◽  
Breanna Rice ◽  
Eunice C. Chen ◽  
Kevin M. Tuffy ◽  
Estelle F. Chiari ◽  
...  

ABSTRACT Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944–3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790–6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome. IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex.


1985 ◽  
Vol 100 (2) ◽  
pp. 409-417 ◽  
Author(s):  
M D Resh ◽  
R L Erikson

Antiserum to the Rous sarcoma virus (RSV)-transforming protein, pp60v-src, was produced in rabbits immunized with p60 expressed in Escherichia coli. alpha p60 serum immunoprecipitated quantitatively more pp60v-src than did tumor-bearing rabbit (TBR) sera. When RSV-transformed cell lysates were preadsorbed with TBR serum, the remaining lysate contained additional pp60v-src, which was recognized only by reimmunoprecipitation with alpha p60 serum and not by TBR serum. In subcellular fractions of RSV-infected chicken embryo fibroblasts (RSV-CEFs) and field vole cells probed with TBR serum, the majority of the pp60v-src was associated with the plasma membrane-enriched P100 fraction. However, alpha p60 serum revealed equal distribution of pp60v-src and its kinase activity between the P1 (nuclear) and P100 fractions. The same results were obtained for pp60c-src in uninfected CEFs. On discontinuous sucrose gradients nearly 50% of the P1-pp60v-src sedimented with nuclei, in fractions where no plasma membrane was detected. Indirect immunofluorescence microscopy of RSV-CEFs with alpha p60 serum revealed a distinct pattern of perinuclear fluorescence, in addition to staining at the cell periphery. Thus the use of a highly specific antibody reveals that enzymatically active pp60v-src and pp60c-src molecules are present in other intracellular structures, probably juxtareticular nuclear membranes, in addition to the plasma membrane in normal, uninfected, and wild-type RSV-infected cells.


1984 ◽  
Vol 4 (3) ◽  
pp. 454-467 ◽  
Author(s):  
J G Krueger ◽  
E A Garber ◽  
S S Chin ◽  
H Hanafusa ◽  
A R Goldberg

We have shown previously that the membrane association of the src proteins of recovered avian sarcoma viruses (rASVs) 1702 (56 kilodaltons) and 157 (62.5 kilodaltons), whose size variations occur within 8 kilodaltons of the amino terminus, is salt sensitive and that, in isotonic salt, these src proteins fractionate as soluble cytoplasmic proteins. In contrast, wild-type Rous sarcoma virus pp60src behaves as an integral plasma membrane protein in cellular fractionation studies and shows prominent membrane interaction by immunofluorescence microscopy. In this study we have examined the distribution of these size-variant src proteins between free and complexed forms, their subcellular localization by immunofluorescence microscopy, and their ability to effect several transformation-related cell properties. Glycerol gradient sedimentation of extracts from cells infected either with rASV 1702 or rASV 157 showed that soluble src proteins of these viruses were distributed between free and complexed forms as has been demonstrated for wild-type Rous sarcoma virus pp60src. Pulse-chase studies with rASV pp60src showed that, like wild-type Rous sarcoma virus pp60src, it was transiently found in a complexed form. Indirect immunofluorescence showed that size-variant pp60src proteins are localized in adhesion plaques and regions of cell-to-cell contact in rASV 1702- or 157-infected cells. This result is in contrast with the generalized localization of pp60src in plasma membranes of control rASV-infected cells which produce pp60src. Chicken embryo fibroblasts infected by rASVs 1702 and 157 display a partial-transformation phenotype with respect to (i) transformation-related morphology, (ii) cell surface membrane changes, and (iii) retained extracellular fibronectin. It is possible that the induction of a partial-transformation phenotype may be the result of the unique interaction of the src proteins encoded by these viruses with restricted areas of the plasma membrane.


1990 ◽  
Vol 10 (2) ◽  
pp. 830-836 ◽  
Author(s):  
M Hamaguchi ◽  
M Matsuda ◽  
H Hanafusa

A potential substrate of p60v-src in Rous sarcoma virus-transformed cells was found to be a 130-kilodalton (kDa) glycoprotein which binds to lectin-Sepharose and can be immunoprecipitated by an anti-phosphotyrosine antibody. This glycoprotein was shown to be distinct from the fibronectin receptor and a cellular protein phosphorylated in p60v-src immune complexes. The protein was a transmembrane protein localized in the plasma membrane and resistant to extraction with Triton X-100. The 130-kDa protein was also highly phosphorylated in cells transformed by Fujinami sarcoma virus or Y73 but not in cells infected with Rous sarcoma virus mutants that encode p60v-src lacking myristoylated N termini. Phosphorylation of this glycoprotein was temperature dependent in cells infected with temperature-sensitive mutants. The good correlation between its phosphorylation and morphological transformation, together with its relative abundance among phosphorylated proteins and its subcellular localization, suggests that phosphorylation of the 130-kDa glycoprotein is one of the primary events important for cell transformation by p60v-src and related oncogene products.


2015 ◽  
Vol 90 (5) ◽  
pp. 2473-2485 ◽  
Author(s):  
Robert A. Dick ◽  
Marilia Barros ◽  
Danni Jin ◽  
Mathias Lösche ◽  
Volker M. Vogt

ABSTRACTThe principles underlying membrane binding and assembly of retroviral Gag proteins into a lattice are understood. However, little is known about how these processes are related. Using purified Rous sarcoma virus Gag and Gag truncations, we studied the interrelation of Gag-Gag interaction and Gag-membrane interaction. Both by liposome binding and by surface plasmon resonance on a supported bilayer, Gag bound to membranes much more tightly than did matrix (MA), the isolated membrane binding domain. In principle, this difference could be explained either by protein-protein interactions leading to cooperativity in membrane binding or by the simultaneous interaction of the N-terminal MA and the C-terminal nucleocapsid (NC) of Gag with the bilayer, since both are highly basic. However, we found that NC was not required for strong membrane binding. Instead, the spacer peptide assembly domain (SPA), a putative 24-residue helical sequence comprising the 12-residue SP segment of Gag and overlapping the capsid (CA) C terminus and the NC N terminus, was required. SPA is known to be critical for proper assembly of the immature Gag lattice. A single amino acid mutation in SPA that abrogates assemblyin vitrodramatically reduced binding of Gag to liposomes.In vivo, plasma membrane localization was dependent on SPA. Disulfide cross-linking based on ectopic Cys residues showed that the contacts between Gag proteins on the membrane are similar to the known contacts in virus-like particles. Taken together, we interpret these results to mean that Gag membrane interaction is cooperative in that it depends on the ability of Gag to multimerize.IMPORTANCEThe retroviral structural protein Gag has three major domains. The N-terminal MA domain interacts directly with the plasma membrane (PM) of cells. The central CA domain, together with immediately adjoining sequences, facilitates the assembly of thousands of Gag molecules into a lattice. The C-terminal NC domain interacts with the genome, resulting in packaging of viral RNA. For assemblyin vitrowith purified Gag, in the absence of membranes, binding of NC to nucleic acid somehow facilitates further Gag-Gag interactions that lead to formation of the Gag lattice. The contributions of MA-mediated membrane binding to virus particle assembly are not well understood. Here, we report that in the absence of nucleic acid, membranes provide a platform that facilitates Gag-Gag interactions. This study demonstrates that the binding of Gag, but not of MA, to membranes is cooperative and identifies SPA as a major factor that controls this cooperativity.


2001 ◽  
Vol 75 (23) ◽  
pp. 11544-11554 ◽  
Author(s):  
Christina Ochsenbauer-Jambor ◽  
David C. Miller ◽  
Charles R. Roberts ◽  
Sung S. Rhee ◽  
Eric Hunter

ABSTRACT The Rous sarcoma virus (RSV) transmembrane (TM) glycoprotein is modified by the addition of palmitic acid. To identify whether conserved cysteines within the hydrophobic anchor region are the site(s) of palmitoylation, and to determine the role of acylation in glycoprotein function, cysteines at residues 164 and 167 of the TM protein were mutated to glycine (C164G, C167G, and C164G/C167G). In CV-1 cells, palmitate was added to env gene products containing single mutations but was absent in the double-mutant Env. Although mutant Pr95 Env precursors were synthesized with wild-type kinetics, the phenotypes of the mutants differed markedly. Env-C164G had properties similar to those of the wild type, while Env-C167G was degraded faster, and Env containing the double mutant C164G/C167G was very rapidly degraded. Degradation occurred after transient plasma membrane expression. The decrease in steady-state surface expression and increased rate of internalization into endosomes and lysosomes paralleled the decrease in palmitoylation observed for the mutants. The phenotypes of mutant viruses were assessed in avian cells in the context of the pATV8R proviral genome. Virus containing the C164G mutation replicated with wild-type kinetics but exhibited reduced peak reverse transcriptase levels. In contrast, viruses containing either the C167G or the C164G/C167G mutation were poorly infectious or noninfectious, respectively. These phenotypes correlated with different degrees of glycoprotein incorporation into virions. Infectious revertants of the double mutant demonstrated the importance of cysteine-167 for efficient plasma membrane expression and Env incorporation. The observation that both cysteines within the membrane-spanning domain are accessible for acylation has implications for the topology of this region, and a model is proposed.


1990 ◽  
Vol 10 (2) ◽  
pp. 830-836
Author(s):  
M Hamaguchi ◽  
M Matsuda ◽  
H Hanafusa

A potential substrate of p60v-src in Rous sarcoma virus-transformed cells was found to be a 130-kilodalton (kDa) glycoprotein which binds to lectin-Sepharose and can be immunoprecipitated by an anti-phosphotyrosine antibody. This glycoprotein was shown to be distinct from the fibronectin receptor and a cellular protein phosphorylated in p60v-src immune complexes. The protein was a transmembrane protein localized in the plasma membrane and resistant to extraction with Triton X-100. The 130-kDa protein was also highly phosphorylated in cells transformed by Fujinami sarcoma virus or Y73 but not in cells infected with Rous sarcoma virus mutants that encode p60v-src lacking myristoylated N termini. Phosphorylation of this glycoprotein was temperature dependent in cells infected with temperature-sensitive mutants. The good correlation between its phosphorylation and morphological transformation, together with its relative abundance among phosphorylated proteins and its subcellular localization, suggests that phosphorylation of the 130-kDa glycoprotein is one of the primary events important for cell transformation by p60v-src and related oncogene products.


2013 ◽  
Vol 87 (6) ◽  
pp. 3609-3615 ◽  
Author(s):  
S. Nadaraia-Hoke ◽  
D. V. Bann ◽  
T. L. Lochmann ◽  
N. Gudleski-O'Regan ◽  
L. J. Parent

Sign in / Sign up

Export Citation Format

Share Document