Genes for low-molecular-weight heat shock proteins of soybeans: sequence analysis of a multigene family

1985 ◽  
Vol 5 (12) ◽  
pp. 3417-3428
Author(s):  
R T Nagao ◽  
E Czarnecka ◽  
W B Gurley ◽  
F Schöffl ◽  
J L Key

Soybeans, Glycine max, synthesize a family of low-molecular-weight heat shock (HS) proteins in response to HS. The DNA sequences of two genes encoding 17.5- and 17.6-kilodalton HS proteins were determined. Nuclease S1 mapping of the corresponding mRNA indicated multiple start termini at the 5' end and multiple stop termini at the 3' end. These two genes were compared with two other soybean HS genes of similar size. A comparison among the 5' flanking regions encompassing the presumptive HS promoter of the soybean HS-protein genes demonstrated this region to be extremely homologous. Analysis of the DNA sequences in the 5' flanking regions of the soybean genes with the corresponding regions of Drosophila melanogaster HS-protein genes revealed striking similarity between plants and animals in the presumptive promoter structure of thermoinducible genes. Sequences related to the Drosophila HS consensus regulatory element were found 57 to 62 base pairs 5' to the start of transcription in addition to secondary HS consensus elements located further upstream. Comparative analysis of the deduced amino acid sequences of four soybean HS proteins illustrated that these proteins were greater than 90% homologous. Comparison of the amino acid sequence for soybean HS proteins with other organisms showed much lower homology (less than 20%). Hydropathy profiles for Drosophila, Xenopus, Caenorhabditis elegans, and G. max HS proteins showed a similarity of major hydrophilic and hydrophobic regions, which suggests conservation of functional domains for these proteins among widely dispersed organisms.

1985 ◽  
Vol 5 (12) ◽  
pp. 3417-3428 ◽  
Author(s):  
R T Nagao ◽  
E Czarnecka ◽  
W B Gurley ◽  
F Schöffl ◽  
J L Key

Soybeans, Glycine max, synthesize a family of low-molecular-weight heat shock (HS) proteins in response to HS. The DNA sequences of two genes encoding 17.5- and 17.6-kilodalton HS proteins were determined. Nuclease S1 mapping of the corresponding mRNA indicated multiple start termini at the 5' end and multiple stop termini at the 3' end. These two genes were compared with two other soybean HS genes of similar size. A comparison among the 5' flanking regions encompassing the presumptive HS promoter of the soybean HS-protein genes demonstrated this region to be extremely homologous. Analysis of the DNA sequences in the 5' flanking regions of the soybean genes with the corresponding regions of Drosophila melanogaster HS-protein genes revealed striking similarity between plants and animals in the presumptive promoter structure of thermoinducible genes. Sequences related to the Drosophila HS consensus regulatory element were found 57 to 62 base pairs 5' to the start of transcription in addition to secondary HS consensus elements located further upstream. Comparative analysis of the deduced amino acid sequences of four soybean HS proteins illustrated that these proteins were greater than 90% homologous. Comparison of the amino acid sequence for soybean HS proteins with other organisms showed much lower homology (less than 20%). Hydropathy profiles for Drosophila, Xenopus, Caenorhabditis elegans, and G. max HS proteins showed a similarity of major hydrophilic and hydrophobic regions, which suggests conservation of functional domains for these proteins among widely dispersed organisms.


1991 ◽  
Vol 11 (2) ◽  
pp. 963-971
Author(s):  
B Fenton ◽  
J T Clark ◽  
C M Khan ◽  
J V Robinson ◽  
D Walliker ◽  
...  

Merozoite surface antigen MSA-2 of the human parasite Plasmodium falciparum is being considered for the development of a malaria vaccine. The antigen is polymorphic, and specific monoclonal antibodies differentiate five serological variants of MSA-2 among 25 parasite isolates. The variants are grouped into two major serogroups, A and B. Genes encoding two different variants from serogroup A have been sequenced, and their DNA together with deduced amino acid sequences were compared with sequences encoded by other alleles. The comparison shows that the serological classification reflects differences in DNA sequences and deduced primary structure of MSA-2 variants and serogroups. Thus, the overall homologies of DNA and amino acid sequences are over 95% among variants in the same serogroup. In contrast, similarities between the group A variants and a group B variant are only 70 and 64% for DNA and amino acid sequences, respectively. We propose that the MSA-2 protein is encoded by two highly divergent groups of alleles, with limited additional polymorphism displayed within each group.


1991 ◽  
Vol 11 (2) ◽  
pp. 963-971 ◽  
Author(s):  
B Fenton ◽  
J T Clark ◽  
C M Khan ◽  
J V Robinson ◽  
D Walliker ◽  
...  

Merozoite surface antigen MSA-2 of the human parasite Plasmodium falciparum is being considered for the development of a malaria vaccine. The antigen is polymorphic, and specific monoclonal antibodies differentiate five serological variants of MSA-2 among 25 parasite isolates. The variants are grouped into two major serogroups, A and B. Genes encoding two different variants from serogroup A have been sequenced, and their DNA together with deduced amino acid sequences were compared with sequences encoded by other alleles. The comparison shows that the serological classification reflects differences in DNA sequences and deduced primary structure of MSA-2 variants and serogroups. Thus, the overall homologies of DNA and amino acid sequences are over 95% among variants in the same serogroup. In contrast, similarities between the group A variants and a group B variant are only 70 and 64% for DNA and amino acid sequences, respectively. We propose that the MSA-2 protein is encoded by two highly divergent groups of alleles, with limited additional polymorphism displayed within each group.


1983 ◽  
Vol 3 (4) ◽  
pp. 570-579
Author(s):  
G P Thill ◽  
R A Kramer ◽  
K J Turner ◽  
K A Bostian

The nucleotide sequence of 5'-noncoding and N-terminal coding regions of two coordinately regulated, repressible acid phosphatase genes from Saccharomyces cerevisiae were determined. These unlinked genes encode different, but structurally related polypeptides of molecular weights 60,000 and 56,000. The DNA sequences of their 5'-flanking regions show stretches of extensive homology upstream of, and surrounding, a "TATA" sequence and in a region in which heterogeneous 5' ends of the p60 mRNA were mapped. The predicted amino acid sequences encoded by the N-terminal regions of both genes were confirmed by determination of the amino acid sequence of the native exocellular acid phosphatase and the partial sequence of the presecretory polypeptide synthesized in a cell-free protein synthesizing system. The N-terminal region of the p60 polypeptide was shown to be characterized by a hydrophobic 17-amino acid signal polypeptide which is absent in the native exocellular protein and thought to be necessary for acid phosphatase secretion.


1982 ◽  
Vol 2 (11) ◽  
pp. 1388-1398 ◽  
Author(s):  
T D Ingolia ◽  
M R Slater ◽  
E A Craig

Saccharomyces cerevisiae contains a family of genes related to the major heat shock-induced gene of Drosophila (hsp 70). Two members of the multigene family (YG100 and YG101) were isolated. The primary DNA sequences of more than one-half of the protein-encoding regions of YG100 and YG101 were determined and compared with the Drosophila hsp 70 gene sequence; the predicted amino acid sequences were 72 and 64% homologous to the sequence of the Drosophila hsp 70 protein, respectively. The predicted amino acid sequences of the yeast genes were 65% homologous. Our results demonstrate a striking sequence conservation of hsp 70-related sequences in evolution. Hybridization of the S. cerevisiae genes to total S. cerevisiae DNA indicated that the multigene family consists of approximately 10 members. Hybridization of labeled RNAs from heat-shocked and control cells suggested that, like transcription of the Drosophila hsp 70 gene, transcription of YG100 or a closely related gene is enhanced after heat shock. However, the amount of RNA sequences homologous to YG101 was reduced after heat shock. A multigene family related to the hsp 70 gene exists in Drosophila; transcription of some members is induced by heat shock, whereas transcription of others is not. Our results suggest that S. cerevisiae, like Drosophila, contains a multigene family of hsp 70-related sequences under complex transcriptional regulation and that the differential control, as well as the nucleotide sequence, has been highly conserved in evolution.


Genome ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Guttapadu Sreeramulu ◽  
Nagendra K. Singh

Two novel low molecular weight subunits of glutenin with relative molecular mass (Mr values) of 30 and 32 kDa were isolated from the seeds of hexaploid wheat and characterized at genetic and biochemical levels. Among 115 Indian bread wheat cultivars analysed, 40 had a narrow doublet of the new protein bands, 69 had a wide doublet, 3 had only the faster moving band of the doublet, and the remaining 3 cultivars had only the slower moving band. These subunits could be seen in the alkylated glutenin preparations only and the genes for the faster (designated Glu-D4) and slower (designated Glu-D5) moving protein bands of the doublet were located on chromosomes 1D and 7D, respectively. Amino acid composition of the two new subunits was quite different from those of the other well-characterized gluten proteins, as the new subunits have lower amounts of proline and relatively higher amounts of glycine, aspartic acid – asparagine, cysteine, and lysine. Polyclonal antibodies raised against these polypeptides cross-reacted strongly with the major low molecular weight subunits of wheat glutenin (Glu-3 subunits), but did not cross-react with the high molecular weight glutenin subunits or monomeric gliadins. Furthermore, preliminary results on the N-terminal amino acid sequences of the new subunits show homology with the major low molecular weight glutenin subunits, suggesting an evolutionary link between the two.Key words: Triticum aestivum, glutenin subunits, gene location, immunoblotting.


1983 ◽  
Vol 3 (4) ◽  
pp. 570-579 ◽  
Author(s):  
G P Thill ◽  
R A Kramer ◽  
K J Turner ◽  
K A Bostian

The nucleotide sequence of 5'-noncoding and N-terminal coding regions of two coordinately regulated, repressible acid phosphatase genes from Saccharomyces cerevisiae were determined. These unlinked genes encode different, but structurally related polypeptides of molecular weights 60,000 and 56,000. The DNA sequences of their 5'-flanking regions show stretches of extensive homology upstream of, and surrounding, a "TATA" sequence and in a region in which heterogeneous 5' ends of the p60 mRNA were mapped. The predicted amino acid sequences encoded by the N-terminal regions of both genes were confirmed by determination of the amino acid sequence of the native exocellular acid phosphatase and the partial sequence of the presecretory polypeptide synthesized in a cell-free protein synthesizing system. The N-terminal region of the p60 polypeptide was shown to be characterized by a hydrophobic 17-amino acid signal polypeptide which is absent in the native exocellular protein and thought to be necessary for acid phosphatase secretion.


1991 ◽  
Vol 16 (4) ◽  
pp. 729-731 ◽  
Author(s):  
Kamel Darwish ◽  
Liqun Wang ◽  
Cheol Ho Hwang ◽  
Nestor Apuya ◽  
J. Lynn Zimmerman

2007 ◽  
Vol 87 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Yu-He Pei ◽  
Ai-Li Wang ◽  
Xue-Li An ◽  
Xiao-Hui Li ◽  
Yan-Zhen Zhang ◽  
...  

Three low molecular weight glutenin subunit (LMW-GS) genes from T121, T128 and T132 accessions of Aegilops tauschii (DD, 2n = 2x = 14) were amplified using allelic-specific PCR primers. The amplified products with a size of about 900 bp were cloned and sequenced. Three complete coding sequences of LMW-GS with 918 bp, 921 bp and 918 bp were obtained and named as LMW-T121, LMW-T128, LMW-T132, respectively. Each gene contained a complete open reading frame and had no introns. The deduced amino acid sequences showed that all belonged to LMW-m type subunit with a predicted molecular weight of about 32 kDa, corresponding to the size of LMW C-subunits. All three subunits possessed eight cysteine residues and had greater homology with previously characterized LMW-m subunits from bread wheat and related species than LMW-s or LMW-i sequences. Some amino acid substitutions and insertion/deletion variations among the sequences were detected. The corresponding three C-subunits in seed endosperm encoded by LMW-T121, LMW-T128, LMW-T132, respectively, were identified and confirmed by SDS-PAGE, MALDI-TOF-MS and direct N-terminal amino acid sequencing. Phylogenetic analysis demonstrated that LMW-m and LMW-s type subunit genes possessed higher identity and they were obviously separated from LMW-i type subunit genes. The LMW-m type might be the primitive form while the LMW-s and LMW-i types are variant forms. Key words: Aegilops tauschii, LMW-GS, AS-PCR, phylogenetic analysis


1982 ◽  
Vol 2 (11) ◽  
pp. 1388-1398
Author(s):  
T D Ingolia ◽  
M R Slater ◽  
E A Craig

Saccharomyces cerevisiae contains a family of genes related to the major heat shock-induced gene of Drosophila (hsp 70). Two members of the multigene family (YG100 and YG101) were isolated. The primary DNA sequences of more than one-half of the protein-encoding regions of YG100 and YG101 were determined and compared with the Drosophila hsp 70 gene sequence; the predicted amino acid sequences were 72 and 64% homologous to the sequence of the Drosophila hsp 70 protein, respectively. The predicted amino acid sequences of the yeast genes were 65% homologous. Our results demonstrate a striking sequence conservation of hsp 70-related sequences in evolution. Hybridization of the S. cerevisiae genes to total S. cerevisiae DNA indicated that the multigene family consists of approximately 10 members. Hybridization of labeled RNAs from heat-shocked and control cells suggested that, like transcription of the Drosophila hsp 70 gene, transcription of YG100 or a closely related gene is enhanced after heat shock. However, the amount of RNA sequences homologous to YG101 was reduced after heat shock. A multigene family related to the hsp 70 gene exists in Drosophila; transcription of some members is induced by heat shock, whereas transcription of others is not. Our results suggest that S. cerevisiae, like Drosophila, contains a multigene family of hsp 70-related sequences under complex transcriptional regulation and that the differential control, as well as the nucleotide sequence, has been highly conserved in evolution.


Sign in / Sign up

Export Citation Format

Share Document