Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L.)

Genome ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Guttapadu Sreeramulu ◽  
Nagendra K. Singh

Two novel low molecular weight subunits of glutenin with relative molecular mass (Mr values) of 30 and 32 kDa were isolated from the seeds of hexaploid wheat and characterized at genetic and biochemical levels. Among 115 Indian bread wheat cultivars analysed, 40 had a narrow doublet of the new protein bands, 69 had a wide doublet, 3 had only the faster moving band of the doublet, and the remaining 3 cultivars had only the slower moving band. These subunits could be seen in the alkylated glutenin preparations only and the genes for the faster (designated Glu-D4) and slower (designated Glu-D5) moving protein bands of the doublet were located on chromosomes 1D and 7D, respectively. Amino acid composition of the two new subunits was quite different from those of the other well-characterized gluten proteins, as the new subunits have lower amounts of proline and relatively higher amounts of glycine, aspartic acid – asparagine, cysteine, and lysine. Polyclonal antibodies raised against these polypeptides cross-reacted strongly with the major low molecular weight subunits of wheat glutenin (Glu-3 subunits), but did not cross-react with the high molecular weight glutenin subunits or monomeric gliadins. Furthermore, preliminary results on the N-terminal amino acid sequences of the new subunits show homology with the major low molecular weight glutenin subunits, suggesting an evolutionary link between the two.Key words: Triticum aestivum, glutenin subunits, gene location, immunoblotting.

1989 ◽  
Vol 263 (3) ◽  
pp. 837-842 ◽  
Author(s):  
A P Goldsbrough ◽  
N J Bulleid ◽  
R B Freedman ◽  
R B Flavell

‘High-molecular-weight’ (HMW, high-Mr) glutenin subunits are protein constituents of wheat (Triticum aestivum) seeds and are responsible in part for the viscoelasticity of the dough used to make bread. Two subunits, numbered 10 and 12, are the products of allelic genes. Their amino acid sequences have been derived from the nucleic acid sequences of the respective genes. Subunit 10 has fewer amino acids than subunit 12, but migrates more slowly on SDS/PAGE (polyacrylamide-gel electrophoresis). This anomaly is due to between one and six of the amino acid differences between the subunits, localized towards the C-terminal end of the proteins. This has been established by making chimaeric genes between the genes for subunits 10 and 12, transcribing and translating them in vitro and analysing the products by SDS/PAGE. The postulated conformational differences between subunits 10 and 12 are discussed in relation to current hypotheses for the structure of HMW glutenin subunits.


1985 ◽  
Vol 5 (12) ◽  
pp. 3417-3428 ◽  
Author(s):  
R T Nagao ◽  
E Czarnecka ◽  
W B Gurley ◽  
F Schöffl ◽  
J L Key

Soybeans, Glycine max, synthesize a family of low-molecular-weight heat shock (HS) proteins in response to HS. The DNA sequences of two genes encoding 17.5- and 17.6-kilodalton HS proteins were determined. Nuclease S1 mapping of the corresponding mRNA indicated multiple start termini at the 5' end and multiple stop termini at the 3' end. These two genes were compared with two other soybean HS genes of similar size. A comparison among the 5' flanking regions encompassing the presumptive HS promoter of the soybean HS-protein genes demonstrated this region to be extremely homologous. Analysis of the DNA sequences in the 5' flanking regions of the soybean genes with the corresponding regions of Drosophila melanogaster HS-protein genes revealed striking similarity between plants and animals in the presumptive promoter structure of thermoinducible genes. Sequences related to the Drosophila HS consensus regulatory element were found 57 to 62 base pairs 5' to the start of transcription in addition to secondary HS consensus elements located further upstream. Comparative analysis of the deduced amino acid sequences of four soybean HS proteins illustrated that these proteins were greater than 90% homologous. Comparison of the amino acid sequence for soybean HS proteins with other organisms showed much lower homology (less than 20%). Hydropathy profiles for Drosophila, Xenopus, Caenorhabditis elegans, and G. max HS proteins showed a similarity of major hydrophilic and hydrophobic regions, which suggests conservation of functional domains for these proteins among widely dispersed organisms.


Genome ◽  
2006 ◽  
Vol 49 (2) ◽  
pp. 181-189 ◽  
Author(s):  
H Q Wang ◽  
X Y Zhang

High-molecular-weight glutenin subunits (HMW-GSs) play an important role in the breadmaking quality of wheat flour. In China, cultivars such as Triticum aestivum 'Xiaoyan No. 6' carrying the 1Bx14 and 1By15 glutenin subunits usually have attributes that result in high-quality bread and noodles. HMW-GS 1Bx14 and 1By15 were isolated by preparative sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and used as an antigen to immunize BALB/c mice. A resulting monoclonal antibody belonging to the IgG1 subclass was shown to bind to all HMW-GSs of Triticum aestivum cultivars, but did not bind to other storage proteins of wheat seeds in a Western blot analysis. After screening a complementary DNA expression library from immature seeds of 'Xiaoyan No. 6' using the monoclonal antibody, the HMW-GS 1By15 gene was isolated and fully sequenced. The deduced amino acid sequence showed an extra stretch of 15 amino acid repeats consisting of a hexapeptide and a nonapeptide in the repetitive domain of this y-type HMW subunit. Bacterial expression of a modified 1By15 gene, in which the coding sequence for the signal peptide was removed and a BamHI site eliminated, gave rise to a protein with mobility identical to that of HMW-GSs extracted from seeds of 'Xiaoyan No. 6' via SDS-PAGE. This approach for isolating genes using specific monoclonal antibody against HMW-GS genes is a good alternative to the extensively used polymerase chain reaction (PCR) technology based on sequence homology of HMW-GSs in wheat and its relatives.Key words: wheat, HMW-GS, monoclonal antibody, immunoscreen.


2014 ◽  
Vol 46 (4) ◽  
pp. 342-352
Author(s):  
Jong-Yeol Lee ◽  
Hye-Rang Beom ◽  
Yeong-Tae Kim ◽  
Sun-Hyung Lim ◽  
Ung-Han Yoon ◽  
...  

2007 ◽  
Vol 87 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Yu-He Pei ◽  
Ai-Li Wang ◽  
Xue-Li An ◽  
Xiao-Hui Li ◽  
Yan-Zhen Zhang ◽  
...  

Three low molecular weight glutenin subunit (LMW-GS) genes from T121, T128 and T132 accessions of Aegilops tauschii (DD, 2n = 2x = 14) were amplified using allelic-specific PCR primers. The amplified products with a size of about 900 bp were cloned and sequenced. Three complete coding sequences of LMW-GS with 918 bp, 921 bp and 918 bp were obtained and named as LMW-T121, LMW-T128, LMW-T132, respectively. Each gene contained a complete open reading frame and had no introns. The deduced amino acid sequences showed that all belonged to LMW-m type subunit with a predicted molecular weight of about 32 kDa, corresponding to the size of LMW C-subunits. All three subunits possessed eight cysteine residues and had greater homology with previously characterized LMW-m subunits from bread wheat and related species than LMW-s or LMW-i sequences. Some amino acid substitutions and insertion/deletion variations among the sequences were detected. The corresponding three C-subunits in seed endosperm encoded by LMW-T121, LMW-T128, LMW-T132, respectively, were identified and confirmed by SDS-PAGE, MALDI-TOF-MS and direct N-terminal amino acid sequencing. Phylogenetic analysis demonstrated that LMW-m and LMW-s type subunit genes possessed higher identity and they were obviously separated from LMW-i type subunit genes. The LMW-m type might be the primitive form while the LMW-s and LMW-i types are variant forms. Key words: Aegilops tauschii, LMW-GS, AS-PCR, phylogenetic analysis


1985 ◽  
Vol 5 (12) ◽  
pp. 3417-3428
Author(s):  
R T Nagao ◽  
E Czarnecka ◽  
W B Gurley ◽  
F Schöffl ◽  
J L Key

Soybeans, Glycine max, synthesize a family of low-molecular-weight heat shock (HS) proteins in response to HS. The DNA sequences of two genes encoding 17.5- and 17.6-kilodalton HS proteins were determined. Nuclease S1 mapping of the corresponding mRNA indicated multiple start termini at the 5' end and multiple stop termini at the 3' end. These two genes were compared with two other soybean HS genes of similar size. A comparison among the 5' flanking regions encompassing the presumptive HS promoter of the soybean HS-protein genes demonstrated this region to be extremely homologous. Analysis of the DNA sequences in the 5' flanking regions of the soybean genes with the corresponding regions of Drosophila melanogaster HS-protein genes revealed striking similarity between plants and animals in the presumptive promoter structure of thermoinducible genes. Sequences related to the Drosophila HS consensus regulatory element were found 57 to 62 base pairs 5' to the start of transcription in addition to secondary HS consensus elements located further upstream. Comparative analysis of the deduced amino acid sequences of four soybean HS proteins illustrated that these proteins were greater than 90% homologous. Comparison of the amino acid sequence for soybean HS proteins with other organisms showed much lower homology (less than 20%). Hydropathy profiles for Drosophila, Xenopus, Caenorhabditis elegans, and G. max HS proteins showed a similarity of major hydrophilic and hydrophobic regions, which suggests conservation of functional domains for these proteins among widely dispersed organisms.


Sign in / Sign up

Export Citation Format

Share Document