LEU3 of Saccharomyces cerevisiae encodes a factor for control of RNA levels of a group of leucine-specific genes

1987 ◽  
Vol 7 (8) ◽  
pp. 2708-2717
Author(s):  
P Friden ◽  
P Schimmel

Although the majority of genes for amino acid biosynthesis which have been examined are under general amino acid control, LEU1 and LEU2 of Saccharomyces cerevisiae respond specifically to leucine. We report here an analysis of LEU3, a putative leucine-specific regulatory locus. We show that LEU3 is necessary for expression of wild-type levels of LEU1- and LEU2-specific RNAs and, further, that the levels of LEU4-specific transcripts are also affected by LEU3. We cloned LEU3 and showed by DNA sequence analysis that it contained an open reading frame of 886 amino acids. A striking feature of the predicted LEU3 protein was a cluster of acidic amino acids (19 of 20) located in the C-terminal half of the coding region. The protein also had a repeated cysteine motif which was conserved in a number of other yeast proteins implicated in gene regulation. We show that whole-cell extracts contained a LEU3-dependent DNA-binding activity that interacted with the 5' region of LEU2. Subdivision of the LEU2 5' region established that the LEU3-dependent DNA-binding activity interacted with the segment which had the previously reported homology with LEU1.

1987 ◽  
Vol 7 (8) ◽  
pp. 2708-2717 ◽  
Author(s):  
P Friden ◽  
P Schimmel

Although the majority of genes for amino acid biosynthesis which have been examined are under general amino acid control, LEU1 and LEU2 of Saccharomyces cerevisiae respond specifically to leucine. We report here an analysis of LEU3, a putative leucine-specific regulatory locus. We show that LEU3 is necessary for expression of wild-type levels of LEU1- and LEU2-specific RNAs and, further, that the levels of LEU4-specific transcripts are also affected by LEU3. We cloned LEU3 and showed by DNA sequence analysis that it contained an open reading frame of 886 amino acids. A striking feature of the predicted LEU3 protein was a cluster of acidic amino acids (19 of 20) located in the C-terminal half of the coding region. The protein also had a repeated cysteine motif which was conserved in a number of other yeast proteins implicated in gene regulation. We show that whole-cell extracts contained a LEU3-dependent DNA-binding activity that interacted with the 5' region of LEU2. Subdivision of the LEU2 5' region established that the LEU3-dependent DNA-binding activity interacted with the segment which had the previously reported homology with LEU1.


1991 ◽  
Vol 11 (2) ◽  
pp. 928-934 ◽  
Author(s):  
D J Ebbole ◽  
J L Paluh ◽  
M Plamann ◽  
M S Sachs ◽  
C Yanofsky

CPCI, the principal regulatory protein required for cross-pathway control of amino acid biosynthetic genes in Neurospora crassa, contains a domain similar to the DNA-binding domain of GCN4, the corresponding general regulator in Saccharomyces cerevisiae. We examined binding by CPC1 synthesized in vitro and by CPC1 present in N. crassa whole-cell extracts. CPCI from both sources was shown to bind to the DNA sequence 5'-ATGACTCAT-3', which is also the preferred recognition sequence of GCN4, CPC1 was confirmed as the source of DNA-binding activity in extracts by immunoblotting. Slightly mobility differences between DNA complexes containing CPCI synthesized in vitro and CPC1 in mycelial extracts were observed. Analyses of N. crassa extracts from different stages of asexual development revealed that CPC1 was abundant immediately following spore germination and through early mycelial growth but was scarce subsequently. CPC1 levels could be increased at any time by imposing amino acid starvation. Copies of the CPC1 response element are located upstream of several genes regulated by cross-pathway control, including cpc-1 itself.


1991 ◽  
Vol 11 (2) ◽  
pp. 928-934 ◽  
Author(s):  
D J Ebbole ◽  
J L Paluh ◽  
M Plamann ◽  
M S Sachs ◽  
C Yanofsky

CPCI, the principal regulatory protein required for cross-pathway control of amino acid biosynthetic genes in Neurospora crassa, contains a domain similar to the DNA-binding domain of GCN4, the corresponding general regulator in Saccharomyces cerevisiae. We examined binding by CPC1 synthesized in vitro and by CPC1 present in N. crassa whole-cell extracts. CPCI from both sources was shown to bind to the DNA sequence 5'-ATGACTCAT-3', which is also the preferred recognition sequence of GCN4, CPC1 was confirmed as the source of DNA-binding activity in extracts by immunoblotting. Slightly mobility differences between DNA complexes containing CPCI synthesized in vitro and CPC1 in mycelial extracts were observed. Analyses of N. crassa extracts from different stages of asexual development revealed that CPC1 was abundant immediately following spore germination and through early mycelial growth but was scarce subsequently. CPC1 levels could be increased at any time by imposing amino acid starvation. Copies of the CPC1 response element are located upstream of several genes regulated by cross-pathway control, including cpc-1 itself.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1316 ◽  
Author(s):  
Maud Gillessen ◽  
Pieter Bas Kwak ◽  
Alfred Tamayo

The proteins CLOCK and BMAL1 form a heterodimeric transcription factor essential to circadian rhythms in mammals.  Daily rhythms of CLOCK-BMAL1 DNA binding activity are known to oscillate with target gene expression in vivo. Here we present a highly sensitive assay that recapitulates native CLOCK-BMAL1 DNA binding rhythms from crude tissue extracts, which we call the Clock Protein-DNA Binding Assay (CPDBA). This method can detect less than 2-fold differences in DNA binding activity, and can deliver results in two hours or less using 10 microliters or less of crude extract, while requiring neither specialized equipment nor expensive probes. To demonstrate the sensitivity and versatility of this assay, we show that enzymatic removal of phosphate groups from proteins in tissue extracts or pharmacological inhibition of casein kinase I in cell culture increased CLOCK-BMAL1 DNA binding activity by ~1.5 to ~2 fold, as measured by the CPDBA. In addition, we show that the CPDBA can measure CLOCK-BMAL1 binding to reconstituted chromatin. The CPDBA is a sensitive, fast, efficient and versatile probe of clock function.


1994 ◽  
Vol 14 (3) ◽  
pp. 1852-1860
Author(s):  
K Nakagomi ◽  
Y Kohwi ◽  
L A Dickinson ◽  
T Kohwi-Shigematsu

The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.


2004 ◽  
Vol 378 (3) ◽  
pp. 833-838 ◽  
Author(s):  
Tae-Yeong CHOI ◽  
S. Young PARK ◽  
Ho-Sung KANG ◽  
Jae-Hun CHEONG ◽  
Han-Do KIM ◽  
...  

DREF [DRE (DNA replication-related element) binding factor] is an 80 kDa polypeptide homodimer which plays an important role in regulating cell proliferation-related genes. Both DNA binding and dimer formation activities are associated with residues 16–115 of the N-terminal region. However, the mechanisms by which DREF dimerization and DNA binding are regulated remain unknown. Here, we report that the DNA binding activity of DREF is regulated by a redox mechanism, and that the cysteine residues are involved in this regulation. Electrophoretic mobility shift analysis using Drosophila Kc cell extracts or recombinant DREF proteins indicated that the DNA binding domain is sufficient for redox regulation. Site-directed mutagenesis and transient transfection assays showed that Cys59 and/or Cys62 are critical both for DNA binding and for redox regulation, whereas Cys91 is dispensable. In addition, experiments using Kc cells indicated that the DNA binding activity and function of DREF are affected by the intracellular redox state. These findings give insight into the exact nature of DREF function in the regulation of target genes by the intracellular redox state.


1991 ◽  
Vol 11 (3) ◽  
pp. 1566-1577 ◽  
Author(s):  
S K Thukral ◽  
A Eisen ◽  
E T Young

ADR1 is a transcription factor from Saccharomyces cerevisiae that regulates ADH2 expression through a 22-bp palindromic sequence (UAS1). Size fractionation studies revealed that full-length ADR1 and a truncated ADR1 protein containing the first 229 amino acids, which has the complete DNA-binding domain, ADR1:17-229, exist as monomers in solution. However, two complexes were formed with target DNA-binding sites. UV-cross-linking studies suggested that these two complexes represent one and two molecules of ADR1 bound to DNA. Studies of ADR1 complexes formed with wild-type UAS1, asymmetrically altered UAS1, and one half of UAS1 showed that ADR1 can bind to one half of UAS1 and gives rise to a complex containing one molecule of ADR1. Dimethyl sulfate interference studies were consistent with this interpretation and in addition indicated that purine contact sites in each half of UAS1 were identical. Increasing the distance between the two halves of UAS1 had at most a minor effect of the thermodynamics of formation of the two complexes. These data are more consistent with ADR1 binding as two independent monomers, one to each half of UAS1. However, binding of two ADR1 monomers at UAS1 is apparently essential for transactivation in vivo. Further, we have identified a stretch of 18 amino acid residues amino terminal to the zinc two-finger domains of ADR1 which is essential for DNA-binding activity. Single amino acid substitutions of residues in this region resulted in severely reduced DNA-binding activity.


1994 ◽  
Vol 14 (7) ◽  
pp. 4380-4389 ◽  
Author(s):  
L I Chen ◽  
T Nishinaka ◽  
K Kwan ◽  
I Kitabayashi ◽  
K Yokoyama ◽  
...  

Studies have demonstrated that the retinoblastoma susceptibility gene product, RB, can either positively or negatively regulate expression of several genes through cis-acting elements in a cell-type-dependent manner. The nucleotide sequence of the retinoblastoma control element (RCE) motif, GCCACC or CCACCC, and the Sp1 consensus binding sequence, CCGCCC, can confer equal responsiveness to RB. Here, we report that RB activates transcription of the c-jun gene through the Sp1-binding site within the c-jun promoter. Preincubation of crude nuclear extracts with monoclonal antibodies to RB results in reduction of Sp1 complexes in a mobility shift assay, while addition of recombinant RB in mobility shift assay mixtures with CCL64 cell extracts leads to an enhancement of DNA-binding activity of SP1. These results suggest that RB is directly or indirectly involved in Sp1-DNA binding activity. A mechanism by which RB regulates transactivation is indicated by our detection of a heat-labile and protease-sensitive Sp1 negative regulator(s) (Sp1-I) that specifically inhibits Sp1 binding to a c-jun Sp1 site. This inhibition is reversed by addition of recombinant RB proteins, suggesting that RB stimulates Sp1-mediated transactivation by liberating Sp1 from Sp1-I. Additional evidence for Sp1-I involvement in Sp1-mediated transactivation was demonstrated by cotransfection of RB, GAL4-Sp1, and a GAL4-responsive template into CV-1 cells. Finally, we have identified Sp1-I, a approximately 20-kDa protein(s) that inhibits the Sp1 complexes from binding to DNA and that is also an RB-associated protein. These findings provide evidence for a functional link between two distinct classes of oncoproteins, RB and c-Jun, that are involved in the control of cell growth, and also define a novel mechanism for the regulation of c-jun expression.


Sign in / Sign up

Export Citation Format

Share Document