Complex regulation of heat shock- and glucose-responsive genes in human cells

1988 ◽  
Vol 8 (1) ◽  
pp. 393-405
Author(s):  
S S Watowich ◽  
R I Morimoto

We have isolated a human genomic clone that encodes the glucose-responsive protein GRP78 and have used this cloned gene probe, together with a cloned HSP70 gene, to study the expression of both stress-induced genes in response to inhibitors of cellular metabolism. On the basis of the effects of this group of chemicals on GRP78 and HSP70 expression, we have identified three classes of stress gene inducers. The first class induces GRP78 expression and includes inhibitors of glycoprotein processing. The second class results in coordinate activation of both GRP78 and HSP70 synthesis and includes amino acid analogs and heavy metals. Chemicals in the third class coordinately induce GRP78 and repress HSP70 expression; this class includes the calcium ionophore A23187 and the glucose analog 2-deoxyglucose. Whereas induction of GRP78 or HSP70 expression is primarily due to transcriptional activation, chemicals that repress HSP70 expression act through posttranscriptional regulation. These results reveal that the regulation of GRP78 and HSP70 expression is complex and may be dependent on the specificity and magnitude of physiological damage.

1988 ◽  
Vol 8 (1) ◽  
pp. 393-405 ◽  
Author(s):  
S S Watowich ◽  
R I Morimoto

We have isolated a human genomic clone that encodes the glucose-responsive protein GRP78 and have used this cloned gene probe, together with a cloned HSP70 gene, to study the expression of both stress-induced genes in response to inhibitors of cellular metabolism. On the basis of the effects of this group of chemicals on GRP78 and HSP70 expression, we have identified three classes of stress gene inducers. The first class induces GRP78 expression and includes inhibitors of glycoprotein processing. The second class results in coordinate activation of both GRP78 and HSP70 synthesis and includes amino acid analogs and heavy metals. Chemicals in the third class coordinately induce GRP78 and repress HSP70 expression; this class includes the calcium ionophore A23187 and the glucose analog 2-deoxyglucose. Whereas induction of GRP78 or HSP70 expression is primarily due to transcriptional activation, chemicals that repress HSP70 expression act through posttranscriptional regulation. These results reveal that the regulation of GRP78 and HSP70 expression is complex and may be dependent on the specificity and magnitude of physiological damage.


Blood ◽  
1991 ◽  
Vol 77 (6) ◽  
pp. 1362-1370 ◽  
Author(s):  
JO Hensold ◽  
G Dubyak ◽  
DE Housman

Abstract Murine erythroleukemia (MEL) cells are a useful model for studying the processes that regulate erythroid differentiation because exposure of these cells to a variety of chemical inducing agents results in expression of erythroid-specific genes and the resultant loss of cellular immortality. Previously it has been suggested that the calcium ionophore, A23187, has effects on the early cellular events that lead to the commitment of these cells to differentiation, but was not in itself sufficient to induce differentiation. We demonstrate here that A23187, as well as another calcium ionophore, ionomycin, are capable of inducing commitment to differentiation. Unlike other inducing agents, continual exposure to A23187 inhibits transcription of the erythroid- specific genes, beta-globin and Band 3. This effect is not attributable to an increase in cytosolic calcium concentration, because cells induced by ionomycin produce normal amounts of hemoglobin. These effects of A23187 on MEL cells confirm that commitment to differentiation is a distinct event from the subsequent transcriptional activation of erythroid genes. The ability of both ionophores to induce commitment to differentiation suggests that an increase in cytosolic calcium can trigger commitment to differentiation. These agents should prove useful in investigating the cellular processes that are responsible for commitment to differentiation.


Blood ◽  
1991 ◽  
Vol 77 (6) ◽  
pp. 1362-1370 ◽  
Author(s):  
JO Hensold ◽  
G Dubyak ◽  
DE Housman

Murine erythroleukemia (MEL) cells are a useful model for studying the processes that regulate erythroid differentiation because exposure of these cells to a variety of chemical inducing agents results in expression of erythroid-specific genes and the resultant loss of cellular immortality. Previously it has been suggested that the calcium ionophore, A23187, has effects on the early cellular events that lead to the commitment of these cells to differentiation, but was not in itself sufficient to induce differentiation. We demonstrate here that A23187, as well as another calcium ionophore, ionomycin, are capable of inducing commitment to differentiation. Unlike other inducing agents, continual exposure to A23187 inhibits transcription of the erythroid- specific genes, beta-globin and Band 3. This effect is not attributable to an increase in cytosolic calcium concentration, because cells induced by ionomycin produce normal amounts of hemoglobin. These effects of A23187 on MEL cells confirm that commitment to differentiation is a distinct event from the subsequent transcriptional activation of erythroid genes. The ability of both ionophores to induce commitment to differentiation suggests that an increase in cytosolic calcium can trigger commitment to differentiation. These agents should prove useful in investigating the cellular processes that are responsible for commitment to differentiation.


1996 ◽  
Vol 271 (27) ◽  
pp. 16111-16118 ◽  
Author(s):  
Giuliano Elia ◽  
Alessandra De Marco ◽  
Antonio Rossi ◽  
M. Gabriella Santoro

1987 ◽  
Vol 7 (8) ◽  
pp. 2974-2976
Author(s):  
Y K Kim ◽  
A S Lee

The sulfhydryl-reducing agent beta-mercaptoethanol preferentially stimulates the synthesis of glucose-regulated proteins (GRPs) in mammalian cells. The rapid and large increase in GRPs is due to transcriptional activation of GRP94 and GRP78 genes, resulting in a rapid increase in the steady-state levels of GRP transcripts. From analysis of 5'-deletion mutants, the region of beta-mercaptoethanol responsiveness in the GRP78 promoter was mapped within 450 nucleotides upstream of the TATA sequence. This same general region was demonstrated to be important for induction of the GRP78 gene by the calcium ionophore A23187, glucose starvation, and a temperature-sensitive mutation in a K12 cell line defective in protein glycosylation.


1987 ◽  
Vol 7 (8) ◽  
pp. 2974-2976 ◽  
Author(s):  
Y K Kim ◽  
A S Lee

The sulfhydryl-reducing agent beta-mercaptoethanol preferentially stimulates the synthesis of glucose-regulated proteins (GRPs) in mammalian cells. The rapid and large increase in GRPs is due to transcriptional activation of GRP94 and GRP78 genes, resulting in a rapid increase in the steady-state levels of GRP transcripts. From analysis of 5'-deletion mutants, the region of beta-mercaptoethanol responsiveness in the GRP78 promoter was mapped within 450 nucleotides upstream of the TATA sequence. This same general region was demonstrated to be important for induction of the GRP78 gene by the calcium ionophore A23187, glucose starvation, and a temperature-sensitive mutation in a K12 cell line defective in protein glycosylation.


Author(s):  
R. W. Tucker ◽  
N. S. More ◽  
S. Jayaraman

The mechanisms by which polypeptide growth factors Induce DNA synthesis in cultured cells is not understood, but morphological changes Induced by growth factors have been used as clues to Intracellular messengers responsible for growth stimulation. One such morphological change has been the transient disappearance of the primary cilium, a “9 + 0” cilium formed by the perinuclear centriole in interphase cells. Since calcium ionophore A23187 also produced both mitogenesis and ciliary changes, microtubule depolymerization might explain ciliary disappearance monitored by indirect immunofluorescence with anti-tubulin antibody. However, complete resorption and subsequent reformation of the primary cilium occurs at mitosis, and might also account for ciliary disappearance induced by growth factors. To settle this issue, we investigated the ultrastructure of the primary cilium using serial thin-section electron microscopy of quiescent BALB/c 3T3 cells before and after stimulation with serum.


1982 ◽  
Vol 48 (01) ◽  
pp. 049-053 ◽  
Author(s):  
C G Fenn ◽  
J M Littleton

SummaryEthanol at physiologically tolerable concentrations inhibited platelet aggregation in vitro in a relatively specific way, which may be influenced by platelet membrane lipid composition. Aggregation to collagen, calcium ionophore A23187 and thrombin (low doses) were often markedly inhibited by ethanol, adrenaline and ADP responses were little affected, and aggregation to exogenous arachidonic acid was actually potentiated by ethanol. Aggregation to collagen, thrombin and A23187 was inhibited more by ethanol in platelets enriched with saturated fatty acids than in those enriched with unsaturated fats. Platelets enriched with cholesterol showed increased sensitivity to ADP, arachidonate and adrenaline but this increase in cholesterol content did not appear to influence the inhibition by ethanol of platelet responses. The results suggest that ethanol may inhibit aggregation by an effect on membrane fluidity and/or calcium mobilization resulting in decreased activity of a membrane-bound phospholipase.


1990 ◽  
Vol 68 (6) ◽  
pp. 671-676 ◽  
Author(s):  
William Gibb ◽  
Jean-Claude Lavoie

The human amnion may be an important source of prostaglandins involved in the onset of human labor and therefore it is important to define the factors that regulate their formation in this tissue. In the present study we demonstrate that glucocorticoids inhibit prostaglandin production by freshly isolated amnion cells. The inhibitory action of the glucocorticoids, however, changes to a stimulatory action when the cells are maintained in primary culture for a few days. For both inhibition and stimulation, concentrations of 10−8 M dexamethasone or greater were required to give significant effects, and estradiol and progesterone had no effect on the prostaglandin output of the cells. Epidermal growth factor (EGF), which has previously been found to stimulate prostaglandin output by confluent amnion cells, did not alter prostaglandin output of cells initially placed in culture. Furthermore, the stimulatory action of EGF and dexamethasone appeared additive. The calcium ionophore A23187 stimulated prostaglandin output in freshly isolated cells and accentuated the inhibitory effect of dexamethasone. These studies indicate that prostaglandin formation by human amnion during pregnancy could be regulated by glucocorticoids. These steroids are easily available to the amnion by way of cortisone conversion to Cortisol by the maternal decidua. The results also indicate that amnion is capable of responding to glucocorticoids in both a stimulatory and inhibitory fashion and whether one or both actions are of importance in vivo is a question that is as yet unresolved.Key words: prostaglandins, amnion, fetal membranes, glucocorticoids, labor, pregnancy.


Sign in / Sign up

Export Citation Format

Share Document