scholarly journals Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae.

1989 ◽  
Vol 9 (2) ◽  
pp. 390-395 ◽  
Author(s):  
S Powers ◽  
K O'Neill ◽  
M Wigler

Two mutant alleles of RAS2 were discovered that dominantly interfere with wild-type RAS function in the yeast Saccharomyces cerevisiae. An amino acid substitution which caused the dominant interference was an alanine for glycine at position 22 or a proline for alanine at position 25. Analogous mutations in human H-ras also dominantly inhibited RAS function when expressed in yeast cells. The inhibitory effects of the mutant RAS2 or H-ras genes could be overcome by overexpression of CDC25, but only in the presence of wild-type RAS. These results suggest that these mutant RAS genes interfere with the normal interaction of RAS and CDC25 proteins and suggest that this interaction is direct and has evolutionarily conserved features.

1989 ◽  
Vol 9 (2) ◽  
pp. 390-395
Author(s):  
S Powers ◽  
K O'Neill ◽  
M Wigler

Two mutant alleles of RAS2 were discovered that dominantly interfere with wild-type RAS function in the yeast Saccharomyces cerevisiae. An amino acid substitution which caused the dominant interference was an alanine for glycine at position 22 or a proline for alanine at position 25. Analogous mutations in human H-ras also dominantly inhibited RAS function when expressed in yeast cells. The inhibitory effects of the mutant RAS2 or H-ras genes could be overcome by overexpression of CDC25, but only in the presence of wild-type RAS. These results suggest that these mutant RAS genes interfere with the normal interaction of RAS and CDC25 proteins and suggest that this interaction is direct and has evolutionarily conserved features.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


1978 ◽  
Vol 24 (6) ◽  
pp. 637-642 ◽  
Author(s):  
K. C. Thomas ◽  
Mary Spencer

Effects of the carbon source and oxygen on ethylene production by the yeast Saccharomyces cerevisiae have been studied. The amounts of ethylene evolved by the yeast culture were less than those detected in the blank (an equal volume of uninoculated medium), suggesting a net absorption of ethylene by the yeast cells. Addition of glucose to the lactate-grown yeast culture induced ethylene production. This glucose-induced stimulation of ethylene production was inhibited to a great extent by cycloheximide. Results suggested that the yeast cells in the presence of glucose synthesized an ethylene precursor and passed it into the medium. The conversion of this precursor to ethylene might be stimulated by oxygen. The fact that ethylene was produced by the yeast growing anaerobically and also by respiration-deficient mutants isolated from the wild-type yeast suggested that mitochondrial ATP synthesis was not an absolute requirement for ethylene biogenesis.


1990 ◽  
Vol 110 (1) ◽  
pp. 105-114 ◽  
Author(s):  
B K Haarer ◽  
S H Lillie ◽  
A E Adams ◽  
V Magdolen ◽  
W Bandlow ◽  
...  

We have isolated profilin from yeast (Saccharomyces cerevisiae) and have microsequenced a portion of the protein to confirm its identity; the region microsequenced agrees with the predicted amino acid sequence from a profilin gene recently isolated from S. cerevisiae (Magdolen, V., U. Oechsner, G. Müller, and W. Bandlow. 1988. Mol. Cell. Biol. 8:5108-5115). Yeast profilin resembles profilins from other organisms in molecular mass and in the ability to bind to polyproline, retard the rate of actin polymerization, and inhibit hydrolysis of ATP by monomeric actin. Using strains that carry disruptions or deletions of the profilin gene, we have found that, under appropriate conditions, cells can survive without detectable profilin. Such cells grow slowly, are temperature sensitive, lose the normal ellipsoidal shape of yeast cells, often become multinucleate, and generally grow much larger than wild-type cells. In addition, these cells exhibit delocalized deposition of cell wall chitin and have dramatically altered actin distributions.


1996 ◽  
Vol 16 (6) ◽  
pp. 2878-2887 ◽  
Author(s):  
X Liu ◽  
J Bowen ◽  
M A Gorovsky

H2A.F/Z histones are conserved variants that diverged from major H2A proteins early in evolution, suggesting they perform an important function distinct from major H2A proteins. Antisera specific for hv1, the H2A.F/Z variant of the ciliated protozoan Tetrahymena thermophila, cross-react with proteins from Saccharomyces cerevisiae. However, no H2A.F/Z variant has been reported in this budding yeast species. We sought to distinguish among three explanations for these observations: (i) that S. cerevisiae has an undiscovered H2A.F/Z variant, (ii) that the major S. cerevisiae H2A proteins are functionally equivalent to H2A.F/Z variants, or (iii) that the conserved epitope is found on a non-H2A molecule. Repeated attempts to clone an S. cerevisiae hv1 homolog only resulted in the cloning of the known H2A genes yHTA1 and yHTA2. To test for functional relatedness, we attempted to rescue strains lacking the yeast H2A genes with either the Tetrahymena major H2A genes (tHTA1 or tHTA2) or the gene (tHTA3) encoding hv1. Although they differ considerably in sequence from the yeast H2A genes, the major Tetrahymena H2A genes can provide the essential functions of H2A in yeast cells, the first such case of trans-species complementation of histone function. The Tetrahymena H2A genes confer a cold-sensitive phenotype. Although expressed at high levels and transported to the nucleus, hv1 cannot replace yeast H2A proteins. Proteins from S. cerevisiae strains lacking yeast H2A genes fail to cross-react with anti-hv1 antibodies. These studies make it likely that S. cerevisiae differs from most other eukaryotes in that it does not have an H2A.F/Z homolog. A hypothesis is presented relating the absence of H2A.F/Z in S. cerevisiae to its function in other organisms.


1991 ◽  
Vol 11 (6) ◽  
pp. 3105-3114
Author(s):  
J Schnier ◽  
H G Schwelberger ◽  
Z Smit-McBride ◽  
H A Kang ◽  
J W Hershey

Translation intitiation factor eIF-5A (previously named eIF-4D) is a highly conserved protein that promotes formation of the first peptide bond. One of its lysine residues is modified by spermidine to form hypusine, a posttranslational modification unique to eIF-5A. To elucidate the function of eIF-5A and determine the role of its hypusine modification, the cDNA encoding human eIF-5A was used as a probe to identify and clone the corresponding genes from the yeast Saccharomyces cerevisiae. Two genes named TIF51A and TIF51B were cloned and sequenced. The two yeast proteins are closely related, sharing 90% sequence identity, and each is ca. 63% identical to the human protein. The purified protein expressed from the TIF51A gene substitutes for HeLa eIF-5A in the mammalian methionyl-puromycin synthesis assay. Strains lacking the A form of eIF-5A, constructed by disruption of TIF51A with LEU2, grow slowly, whereas strains lacking the B form, in which HIS3 was used to disrupt TIF51B, show no growth rate phenotype. However, strains with both TIF51A and TIF51B disrupted are not viable, indicating that eIF-5a is essential for cell growth in yeast cells. Northern (RNA) blot analysis shows two mRNA species, a larger mRNA (0.9 kb) transcribed from TIF51A and a smaller mRNA (0.8 kb) encoded by TIF51B. Under the aerobic growth conditions of this study, the 0.8-kb TIF51B transcript is not detected in the wild-type strain and is expressed only when TIF51A is disrupted. The TIF51A gene was altered by site-directed mutagenesis at the site of hypusination by changing the Lys codon to that for Arg, thereby producing a stable protein that retains the positive charge but is not modified to the hypusine derivative. The plasmid shuffle technique was used to replace the wild-type gene with the mutant form, resulting in failure of the yeast cells to grow. This result indicates that hypusine very likely is required for the vital in vivo function of eIF-5A and suggests a precise, essential role for the polyamine spermidine in cell metabolism.


1985 ◽  
Vol 5 (8) ◽  
pp. 1839-1846 ◽  
Author(s):  
S B Baim ◽  
D F Pietras ◽  
D C Eustice ◽  
F Sherman

The CYC1-239-O mutation in the yeast Saccharomyces cerevisiae produces a -His-Leu- replacement of the normal -Ala-Gly- sequence at amino acid positions 5 and 6, which lie within a dispensable region of iso-1-cytochrome c; this mutation can accommodate the formation of a hairpin structure at the corresponding site in the mRNA. The amount of the altered protein was diminished to 20% of the wild-type level, whereas the amount of the mRNA remained normal. However, in contrast to the normal CYC1+ mRNA that is associated mainly with four to seven ribosomes, the bulk of the CYC1-239-O mRNA is associated with one to four ribosomes. These results suggest that the stable secondary structure within the translated region of the CYC1 mRNA diminishes translation by inhibiting elongation.


1994 ◽  
Vol 14 (8) ◽  
pp. 5569-5578 ◽  
Author(s):  
K Mitsui ◽  
S Yaguchi ◽  
K Tsurugi

A gene with an open reading frame encoding a protein of 417 amino acid residues with a Gly-Thr repeat was isolated from the yeast Saccharomyces cerevisiae by using synthetic oligonucleotides encoding three Gly-Thr dimers as probes. The deduced amino acid sequence showed partial homology to the clock-affecting gene, per, of Drosophila melanogaster in the regions including the GT repeat. The function of the gene, named GTS1, was examined by characterizing the phenotypes of transformants with different copy numbers of the GTS1 gene produced either by inactivating the GTS1 gene by gene disruption (TM delta gts1) or by transformation with multicopy plasmid pPER119 (TMpGTS1). They grew at similar rates during the exponential growth phase, but the lag phases were shorter for TM delta gts1 and longer for TMpGTS1 cells than that for the wild type. Analyses of their cell cycle parameters using synchronized cells revealed that the unbudding period changed as a function of gene dosage; that is, the periods of TM delta gts1 and TMpGTS1 were about 20% shorter and longer, respectively, than that of the wild-type. Another significant change in the transformants was detected in the distribution of the cell size. The mean cell volume of the TM delta gts1 cells in the unbudded period (single cells) was 27% smaller than that of single wild-type cells, whereas that of single TMpGTS1 cells was 48% larger. Furthermore, in the temperature-sensitive cdc4 mutant, the GTS1 gene affected the timing of budding at the restrictive temperature. Thus, the GTS1 gene product appears to modulate the timing of budding to obtain an appropriate cell size independent of the DNA replication cycle.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


Author(s):  
Pilendra Kumar Thakre ◽  
Rakesh Kumar Sahu ◽  
Raghuvir Singh Tomar

Histone residues play an essential role in the regulation of various biological processes. In the present study, we have utilized the H3/H4 histone mutant library to probe functional aspects of histone residues in amino acid biosynthesis. We found that histone residue H3R72 plays a crucial role in the regulation of isoleucine biosynthesis. Substitution of arginine residue (H3R72) of histone H3 to alanine (H3R72A) renders yeast cells unable to grow in the minimal media. Histone mutant H3R72A requires the external supplementation of either isoleucine, serine, or threonine for the growth in minimal media. We also observed that H3R72 residue and leucine amino acid in synthetic complete media might play a crucial role in determining the intake of isoleucine and threonine in yeast. Further, gene deletion analysis of ILV1 and CHA1 in H3R72A mutant confirmed that isoleucine is the sole requirement for growth in minimal medium. Altogether, we have identified that histone H3R72 residue may be crucial for yeast growth in the minimal medium by regulating isoleucine biosynthesis through the Ilv1 enzyme in budding yeast Saccharomyces cerevisiae.


Sign in / Sign up

Export Citation Format

Share Document