Evolution of ethylene by Saccharomyces cerevisiae as influenced by the carbon source for growth and the presence of air

1978 ◽  
Vol 24 (6) ◽  
pp. 637-642 ◽  
Author(s):  
K. C. Thomas ◽  
Mary Spencer

Effects of the carbon source and oxygen on ethylene production by the yeast Saccharomyces cerevisiae have been studied. The amounts of ethylene evolved by the yeast culture were less than those detected in the blank (an equal volume of uninoculated medium), suggesting a net absorption of ethylene by the yeast cells. Addition of glucose to the lactate-grown yeast culture induced ethylene production. This glucose-induced stimulation of ethylene production was inhibited to a great extent by cycloheximide. Results suggested that the yeast cells in the presence of glucose synthesized an ethylene precursor and passed it into the medium. The conversion of this precursor to ethylene might be stimulated by oxygen. The fact that ethylene was produced by the yeast growing anaerobically and also by respiration-deficient mutants isolated from the wild-type yeast suggested that mitochondrial ATP synthesis was not an absolute requirement for ethylene biogenesis.

2005 ◽  
Vol 289 (1) ◽  
pp. C58-C67 ◽  
Author(s):  
Péter Csutora ◽  
András Strassz ◽  
Ferenc Boldizsár ◽  
Péter Németh ◽  
Katalin Sipos ◽  
...  

Phosphoglucomutase is a key enzyme of glucose metabolism that interconverts glucose-1-phosphate and glucose-6-phosphate. Loss of the major isoform of phosphoglucomutase in Saccharomyces cerevisiae results in a significant increase in the cellular glucose-1-phosphate-to-glucose-6-phosphate ratio when cells are grown in medium containing galactose as carbon source. This imbalance in glucose metabolites was recently shown to also cause a six- to ninefold increase in cellular Ca2+ accumulation. We found that Li+ inhibition of phosphoglucomutase causes a similar elevation of total cellular Ca2+ and an increase in 45Ca2+ uptake in a wild-type yeast strain grown in medium containing galactose, but not glucose, as sole carbon source. Li+ treatment also reduced the transient elevation of cytosolic Ca2+ response that is triggered by exposure to external CaCl2 or by the addition of galactose to yeast cells starved of a carbon source. Finally, we found that the Ca2+ overaccumulation induced by Li+ exposure was significantly reduced in a strain lacking the vacuolar Ca2+-ATPase Pmc1p. These observations suggest that Li+ inhibition of phosphoglucomutase results in an increased glucose-1-phosphate-to-glucose-6-phosphate ratio, which results in an accelerated rate of vacuolar Ca2+ uptake via the Ca2+-ATPase Pmc1p.


2004 ◽  
Vol 377 (3) ◽  
pp. 769-774 ◽  
Author(s):  
Precious MOTSHWENE ◽  
Robert KARREMAN ◽  
Gail KGARI ◽  
Wolf BRANDT ◽  
George LINDSEY

Yeast cells Saccharomyces cerevisiae, late embryogenic abundant-like stress response protein Hsp 12 (heat-shock protein 12) were found by immunocytochemistry to be located both in the cytoplasm and in the cell wall, from where they could be extracted with dilute NaOH solutions. Yeast cells with the Hsp 12 gene disrupted were unable to grow in the presence of either 12 mM caffeine or 0.43 mM Congo Red, molecules known to affect cell-wall integrity. The volume of yeast cells were less affected by rapid changes in the osmolality of the growth medium when compared with the wild-type yeast cells, suggesting a role for Hsp 12 in the flexibility of the cell wall. This was also suggested by subjecting the yeast cells to rapid changes in barometric pressure where it was found that wild-type yeast cells were more resistant to cellular breakage.


1989 ◽  
Vol 9 (2) ◽  
pp. 442-451
Author(s):  
M Nishizawa ◽  
R Araki ◽  
Y Teranishi

To clarify carbon source-dependent control of the glycolytic pathway in the yeast Saccharomyces cerevisiae, we have initiated a study of transcriptional regulation of the pyruvate kinase gene (PYK). By deletion analysis of the 5'-noncoding region of the PYK gene, we have identified an upstream activating sequence (UASPYK1) located between 634 and 653 nucleotides upstream of the initiating ATG codon. The promoter activity of the PYK 5'-noncoding region was abolished when the sequence containing the UASPYK1 was deleted from the region. Synthetic UASPYK1 (26mer), in either orientation, was able to restore the transcriptional activity of UAS-depleted mutants when placed upstream of the TATA sequence located at -199 (ATG as +1). While the UASPYK1 was required for basal to intermediate levels of transcriptional activation, a sequence between -714 and -811 was found to be necessary for full activation. On the other hand, a sequence between -344 and -468 was found to be responsible for transcriptional repression of the PYK gene when yeast cells were grown on nonfermentable carbon sources. This upstream repressible sequence also repressed transcription, although to a lesser extent, when glucose was present in the medium. The possible mechanism for carbon source-dependent regulation of PYK expression through these cis-acting regulatory elements is discussed.


1990 ◽  
Vol 110 (1) ◽  
pp. 105-114 ◽  
Author(s):  
B K Haarer ◽  
S H Lillie ◽  
A E Adams ◽  
V Magdolen ◽  
W Bandlow ◽  
...  

We have isolated profilin from yeast (Saccharomyces cerevisiae) and have microsequenced a portion of the protein to confirm its identity; the region microsequenced agrees with the predicted amino acid sequence from a profilin gene recently isolated from S. cerevisiae (Magdolen, V., U. Oechsner, G. Müller, and W. Bandlow. 1988. Mol. Cell. Biol. 8:5108-5115). Yeast profilin resembles profilins from other organisms in molecular mass and in the ability to bind to polyproline, retard the rate of actin polymerization, and inhibit hydrolysis of ATP by monomeric actin. Using strains that carry disruptions or deletions of the profilin gene, we have found that, under appropriate conditions, cells can survive without detectable profilin. Such cells grow slowly, are temperature sensitive, lose the normal ellipsoidal shape of yeast cells, often become multinucleate, and generally grow much larger than wild-type cells. In addition, these cells exhibit delocalized deposition of cell wall chitin and have dramatically altered actin distributions.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
David M Garcia ◽  
David Dietrich ◽  
Jon Clardy ◽  
Daniel F Jarosz

Robust preference for fermentative glucose metabolism has motivated domestication of the budding yeast Saccharomyces cerevisiae. This program can be circumvented by a protein-based genetic element, the [GAR+] prion, permitting simultaneous metabolism of glucose and other carbon sources. Diverse bacteria can elicit yeast cells to acquire [GAR+], although the molecular details of this interaction remain unknown. Here we identify the common bacterial metabolite lactic acid as a strong [GAR+] inducer. Transient exposure to lactic acid caused yeast cells to heritably circumvent glucose repression. This trait had the defining genetic properties of [GAR+], and did not require utilization of lactic acid as a carbon source. Lactic acid also induced [GAR+]-like epigenetic states in fungi that diverged from S. cerevisiae ~200 million years ago, and in which glucose repression evolved independently. To our knowledge, this is the first study to uncover a bacterial metabolite with the capacity to potently induce a prion.


1986 ◽  
Vol 6 (2) ◽  
pp. 488-493
Author(s):  
T M Rickey ◽  
A S Lewin

We isolated the gene for citrate synthase (citrate oxaloacetate lyase; EC 4.1.3.7) from Saccharomyces cerevisiae and ablated it by inserting the yeast LEU2 gene within its reading frame. This revealed a second, nonmitochondrial citrate synthase. Like the mitochondrial enzyme, this enzyme was sensitive to glucose repression. It did not react with antibodies against mitochondrial citrate synthase. Haploid cells lacking a gene for mitochondrial citrate synthase grew somewhat slower than wild-type yeast cells, but exhibited no auxotrophic growth requirements.


1991 ◽  
Vol 11 (6) ◽  
pp. 3105-3114
Author(s):  
J Schnier ◽  
H G Schwelberger ◽  
Z Smit-McBride ◽  
H A Kang ◽  
J W Hershey

Translation intitiation factor eIF-5A (previously named eIF-4D) is a highly conserved protein that promotes formation of the first peptide bond. One of its lysine residues is modified by spermidine to form hypusine, a posttranslational modification unique to eIF-5A. To elucidate the function of eIF-5A and determine the role of its hypusine modification, the cDNA encoding human eIF-5A was used as a probe to identify and clone the corresponding genes from the yeast Saccharomyces cerevisiae. Two genes named TIF51A and TIF51B were cloned and sequenced. The two yeast proteins are closely related, sharing 90% sequence identity, and each is ca. 63% identical to the human protein. The purified protein expressed from the TIF51A gene substitutes for HeLa eIF-5A in the mammalian methionyl-puromycin synthesis assay. Strains lacking the A form of eIF-5A, constructed by disruption of TIF51A with LEU2, grow slowly, whereas strains lacking the B form, in which HIS3 was used to disrupt TIF51B, show no growth rate phenotype. However, strains with both TIF51A and TIF51B disrupted are not viable, indicating that eIF-5a is essential for cell growth in yeast cells. Northern (RNA) blot analysis shows two mRNA species, a larger mRNA (0.9 kb) transcribed from TIF51A and a smaller mRNA (0.8 kb) encoded by TIF51B. Under the aerobic growth conditions of this study, the 0.8-kb TIF51B transcript is not detected in the wild-type strain and is expressed only when TIF51A is disrupted. The TIF51A gene was altered by site-directed mutagenesis at the site of hypusination by changing the Lys codon to that for Arg, thereby producing a stable protein that retains the positive charge but is not modified to the hypusine derivative. The plasmid shuffle technique was used to replace the wild-type gene with the mutant form, resulting in failure of the yeast cells to grow. This result indicates that hypusine very likely is required for the vital in vivo function of eIF-5A and suggests a precise, essential role for the polyamine spermidine in cell metabolism.


1989 ◽  
Vol 9 (2) ◽  
pp. 442-451 ◽  
Author(s):  
M Nishizawa ◽  
R Araki ◽  
Y Teranishi

To clarify carbon source-dependent control of the glycolytic pathway in the yeast Saccharomyces cerevisiae, we have initiated a study of transcriptional regulation of the pyruvate kinase gene (PYK). By deletion analysis of the 5'-noncoding region of the PYK gene, we have identified an upstream activating sequence (UASPYK1) located between 634 and 653 nucleotides upstream of the initiating ATG codon. The promoter activity of the PYK 5'-noncoding region was abolished when the sequence containing the UASPYK1 was deleted from the region. Synthetic UASPYK1 (26mer), in either orientation, was able to restore the transcriptional activity of UAS-depleted mutants when placed upstream of the TATA sequence located at -199 (ATG as +1). While the UASPYK1 was required for basal to intermediate levels of transcriptional activation, a sequence between -714 and -811 was found to be necessary for full activation. On the other hand, a sequence between -344 and -468 was found to be responsible for transcriptional repression of the PYK gene when yeast cells were grown on nonfermentable carbon sources. This upstream repressible sequence also repressed transcription, although to a lesser extent, when glucose was present in the medium. The possible mechanism for carbon source-dependent regulation of PYK expression through these cis-acting regulatory elements is discussed.


2011 ◽  
Vol 35 (4) ◽  
pp. 605-614 ◽  
Author(s):  
C. L. Fernández-López ◽  
B. Torrestiana-Sánchez ◽  
M. A. Salgado-Cervantes ◽  
P. G. Mendoza García ◽  
M. G. Aguilar-Uscanga

1980 ◽  
Vol 192 (2) ◽  
pp. 659-664 ◽  
Author(s):  
J R Woodward ◽  
H L Kornberg

Cells of the wild-type yeast (Saccharomyces cerevisiae) strain Y185, grown under conditions that de-repress the formation of a general amino acid permease (‘Gap’) system, bind delta-N-chloroacetyl[1-(14)C]ornithine; L- and D-amino acid substrates of the general amino acid permease system protect against this binding. The protein responsible is released from the cells by homogenization or by preparation of protoplasts; it is not released by osmotic shock. This protein is virtually absent from the wild-type strain when it is grown under conditions that repress the general amino acid permease system, and is also absent from a Gap- mutant Y185-His3, selected by its resistance to D-amino acids. This mutant and repressed wild-type cells also fail to form a number of membrane proteins elaborated by de-repressed wild-type cells. It is possible that all these proteins are components of the general amino acid permease system.


Sign in / Sign up

Export Citation Format

Share Document