scholarly journals IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae.

1989 ◽  
Vol 9 (2) ◽  
pp. 757-768 ◽  
Author(s):  
K Tanaka ◽  
K Matsumoto ◽  
A Toh-E

A mutation in the gene IRA1 (formerly called PPD1) was originally characterized as a deficiency of a phosphoprotein phosphatase. The IRA1 gene has been cloned and sequenced. A large open reading frame (8,817 base pairs) which can encode a protein of 2,938 amino acids was found. Northern (RNA) blot analysis detected a message of about 10 kilobases, and nuclease S1 protection demonstrated mRNA start points at 97 and 98 base pairs upstream from the putative initiator ATG codon. Disruption of the IRA1 gene resulted in sensitivity to nitrogen starvation and heat shock. Diploids homozygous for the disrupted IRA1 gene were deficient in sporulation. Disruption of the IRA1 gene suppressed the lethality of the cdc25 mutation but did not suppress the lethality of either the ras1 ras2 or the cyr1 mutations. Deficiency of the phosphoprotein phosphatase was not reproducible in the disruption mutant of the IRA1 gene. Moreover, the ira1 mutant showed an increased level of cyclic AMP. Our results suggest that the IRA1 protein inhibits the function of the RAS proteins in a fashion antagonistic to the function of the CDC25 protein in the RAS-cyclic AMP pathway in Saccharomyces cerevisiae.

1989 ◽  
Vol 9 (2) ◽  
pp. 757-768
Author(s):  
K Tanaka ◽  
K Matsumoto ◽  
A Toh-E

A mutation in the gene IRA1 (formerly called PPD1) was originally characterized as a deficiency of a phosphoprotein phosphatase. The IRA1 gene has been cloned and sequenced. A large open reading frame (8,817 base pairs) which can encode a protein of 2,938 amino acids was found. Northern (RNA) blot analysis detected a message of about 10 kilobases, and nuclease S1 protection demonstrated mRNA start points at 97 and 98 base pairs upstream from the putative initiator ATG codon. Disruption of the IRA1 gene resulted in sensitivity to nitrogen starvation and heat shock. Diploids homozygous for the disrupted IRA1 gene were deficient in sporulation. Disruption of the IRA1 gene suppressed the lethality of the cdc25 mutation but did not suppress the lethality of either the ras1 ras2 or the cyr1 mutations. Deficiency of the phosphoprotein phosphatase was not reproducible in the disruption mutant of the IRA1 gene. Moreover, the ira1 mutant showed an increased level of cyclic AMP. Our results suggest that the IRA1 protein inhibits the function of the RAS proteins in a fashion antagonistic to the function of the CDC25 protein in the RAS-cyclic AMP pathway in Saccharomyces cerevisiae.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1707-1715 ◽  
Author(s):  
J L Patton-Vogt ◽  
S A Henry

Abstract Phosphatidylinositol catabolism in Saccharomyces cerevisiae cells cultured in media containing inositol results in the release of glycerophosphoinositol (GroPIns) into the medium. As the extracellular concentration of inositol decreases with growth, the released GroPIns is transported back into the cell. Exploiting the ability of the inositol auxotroph, ino1, to use exogenous GroPIns as an inositol source, we have isolated mutants (Git−) defective in the uptake and metabolism of GroPIns. One mutant was found to be affected in the gene encoding the transcription factor, SPT7. Mutants of the positive regulatory gene INO2, but not of its partner, INO4, also have the Git− phenotype. Another mutant was complemented by a single open reading frame (ORF) termed GIT1 (glycerophosphoinositol). This ORF consists of 1556 bp predicted to encode a polypeptide of 518 amino acids and 57.3 kD. The predicted Git1p has similarity to a variety of S. cerevisiae transporters, including a phosphate transporter (Pho84p), and both inositol transporters (Itr1p and Itr2p). Furthermore, Git1p contains a sugar transport motif and 12 potential membrane-spanning domains. Transport assays performed on a git1 mutant together with the above evidence indicate that the GIT1 gene encodes a permease involved in the uptake of GroPIns.


1988 ◽  
Vol 8 (9) ◽  
pp. 3898-3905 ◽  
Author(s):  
C Huxley ◽  
T Williams ◽  
M Fried

The mouse surfeit locus is unusual in that it contains a number of closely clustered genes (Surf-1, -2, and -4) that alternate in their direction of transcription (T. Williams, J. Yon, C. Huxley, and M. Fried, Proc. Natl. Acad. Sci. USA 85:3527-3530, 1988). The heterogeneous 5' ends of Surf-1 and Surf-2 are separated by 15 to 73 base pairs (bp), and the 3' ends of Surf-2 and Surf-4 overlap by 133 bp (T. Williams and M. Fried, Mol. Cell. Biol. 6:4558-4569, 1986; T. Williams and M. Fried, Nature (London) 322:275-279, 1986). A fourth gene in this locus, Surf-3, which is a member of a multigene family, has been identified. The poly(A) addition site of Surf-3 lies only 70 bp from the poly(A) addition site of Surf-1. Transcription of Surf-3 has been studied in the absence of the other members of its multigene family after transfection of a cloned genomic mouse DNA fragment, containing the Surf-3 gene, into heterologous monkey cells. Surf-3 specifies a highly expressed 1.0-kilobase mRNA that contains a long open reading frame of 266 amino acids, which would encode a highly basic polypeptide (23% Arg plus Lys). The other members of the Surf-3 multigene family are predominantly, if not entirely, intronless pseudogenes with the hallmarks of being generated by reverse transcription. The role of the very tight clustering on regulation of expression of the genes in the surfeit locus is discussed.


1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 739-752 ◽  
Author(s):  
C A Woolford ◽  
C K Dixon ◽  
M F Manolson ◽  
R Wright ◽  
E W Jones

Abstract pep5 mutants of Saccharomyces cerevisiae accumulate inactive precursors to the vacuolar hydrolases. The PEP5 gene was isolated from a genomic DNA library by complementation of the pep5-8 mutation. Deletion analysis localized the complementing activity to a 3.3-kb DNA fragment. DNA sequence analysis of the PEP5 gene revealed an open reading frame of 1029 codons with a calculated molecular mass for the encoded protein of 117,403 D. Deletion/disruption of the PEP5 gene did not kill the cells. The resulting strains grow very slowly at 37 degrees. The disruption mutant showed greatly decreased activities of all vacuolar hydrolases examined, including PrA, PrB, CpY, and the repressible alkaline phosphatase. Apparently normal precursors forms of the proteases accumulated in pep5 mutants, as did novel forms of PrB antigen. Antibodies raised to a fusion protein that contained almost half of the PEP5 open reading frame allowed detection by immunoblot of a protein of relative molecular mass 107 kD in extracts prepared from wild-type cells. Cell fractionation showed the PEP5 gene product is enriched in the vacuolar fraction and appears to be a peripheral vacuolar membrane protein.


1991 ◽  
Vol 11 (5) ◽  
pp. 2593-2608 ◽  
Author(s):  
D X Tishkoff ◽  
A W Johnson ◽  
R D Kolodner

Vegetatively grown Saccharomyces cerevisiae cells contain an activity that promotes a number of homologous pairing reactions. A major portion of this activity is due to strand exchange protein 1 (Sep1), which was originally purified as a 132,000-Mr species (R. Kolodner, D. H. Evans, and P. T. Morrison, Proc. Natl. Acad. Sci. USA 84:5560-5564, 1987). The gene encoding Sep1 was cloned, and analysis of the cloned gene revealed a 4,587-bp open reading frame capable of encoding a 175,000-Mr protein. The protein encoded by this open reading frame was overproduced and purified and had a relative molecular weight of approximately 160,000. The 160,000-Mr protein was at least as active in promoting homologous pairing as the original 132,000-Mr species, which has been shown to be a fragment of the intact 160,000-Mr Sep1 protein. The SEP1 gene mapped to chromosome VII within 20 kbp of RAD54. Three Tn10LUK insertion mutations in the SEP1 gene were characterized. sep1 mutants grew more slowly than wild-type cells, showed a two- to fivefold decrease in the rate of spontaneous mitotic recombination between his4 heteroalleles, and were delayed in their ability to return to growth after UV or gamma irradiation. Sporulation of sep1/sep1 diploids was defective, as indicated by both a 10- to 40-fold reduction in spore formation and reduced spore viability of approximately 50%. The majority of sep1/sep1 diploid cells arrested in meiosis after commitment to recombination but prior to the meiosis I cell division. Return-to-growth experiments showed that sep1/sep1 his4X/his4B diploids exhibited a five- to sixfold greater meiotic induction of His+ recombinants than did isogenic SEP1/SEP1 strains. sep1/sep1 mutants also showed an increased frequency of exchange between HIS4, LEU2, and MAT and a lack of positive interference between these markers compared with wild-type controls. The interaction between sep1, rad50, and spo13 mutations suggested that SEP1 acts in meiosis in a pathway that is parallel to the RAD50 pathway.


1988 ◽  
Vol 8 (4) ◽  
pp. 1432-1442 ◽  
Author(s):  
J D Boeke ◽  
D Eichinger ◽  
D Castrillon ◽  
G R Fink

Saccharomyces cerevisiae Ty elements are transposons closely related to retroviruses. The DNA sequence of a functional Ty element (TyH3) is presented. The long terminal repeat sequences are different, suggesting that TyH3 is a recombinant Ty element. A chromosomal Ty element near the LYS2 gene, Ty173, was found to be nonfunctional, even though it has no detectable insertions or deletions. The defect in Ty173 transposition is caused by a missense mutation giving rise to a Leu-to-Ile substitution in the TYB (pol) open reading frame. Several chromosomal Ty elements carry this lesion in their DNA, indicating that nonfunctional Ty elements are common in the yeast genome.


HortScience ◽  
2016 ◽  
Vol 51 (6) ◽  
pp. 664-668 ◽  
Author(s):  
Jiyu Zhang ◽  
Min Wang ◽  
Zhenghai Mo ◽  
Gang Wang ◽  
Zhongren Guo

The floral homeotic C-function gene AGAMOUS (AG) has been shown to be critical in the determination of stamen and carpel identity in Arabidopsis. In the present study, a new homologue of AGAMOUS gene from pecan [Carya illinoinensis (Wangenh.) K. Koch], denoted by CiAG, was isolated and its function was characterized. The complementary DNA (cDNA) of CiAG contains an open reading frame of 687 base pairs (bp) encoding 227 amino acids. Multiple sequence comparisons revealed that CiAG had the typical MIKC structure. Phylogenetic analysis indicated that CiAG is closely related to C-lineage AG. The expression of CiAG was highly accumulated in the reproductive tissues (staminate flowers, pistillate flowers, and fruitlets) than in vegetative tissues (leaves and current-growth branches). Arabidopsis overexpressing CiAG exhibited earlier flowering. The homeotic transformations of petals into stamen organs were observed in 35S::CiAG transgenic plants. All these results indicated that CiAG plays a key role in the process of flower development of pecan.


Sign in / Sign up

Export Citation Format

Share Document