scholarly journals Differential transcription of exon 1 of the human c-fms gene in placental trophoblasts and monocytes.

1989 ◽  
Vol 9 (3) ◽  
pp. 1336-1341 ◽  
Author(s):  
J Visvader ◽  
I M Verma

Structural analysis of the 5' end of the human c-fms gene revealed that a large intron of about 25 kilobases separates an upstream noncoding exon (exon 1) from the signal peptide-containing exon (exon 2). Northern (RNA) blot analysis, S1 nuclease mapping, and primer extensions showed that exon 1 is transcribed in placenta but not in cells of the monocytic lineage. This is due to the differential usage of promoters, separated by approximately 25 kilobases, in a cell-specific manner. One major c-fms transcript was observed in U-937 cells, whereas multiple initiation sites for transcription appeared to be utilized in placental cells. Nucleotide sequence comparisons showed that the 3' end of the human platelet-derived growth factor receptor gene lies approximately 350 base pairs upstream of the major initiation sites for c-fms transcription in placental trophoblasts.

1989 ◽  
Vol 9 (3) ◽  
pp. 1336-1341
Author(s):  
J Visvader ◽  
I M Verma

Structural analysis of the 5' end of the human c-fms gene revealed that a large intron of about 25 kilobases separates an upstream noncoding exon (exon 1) from the signal peptide-containing exon (exon 2). Northern (RNA) blot analysis, S1 nuclease mapping, and primer extensions showed that exon 1 is transcribed in placenta but not in cells of the monocytic lineage. This is due to the differential usage of promoters, separated by approximately 25 kilobases, in a cell-specific manner. One major c-fms transcript was observed in U-937 cells, whereas multiple initiation sites for transcription appeared to be utilized in placental cells. Nucleotide sequence comparisons showed that the 3' end of the human platelet-derived growth factor receptor gene lies approximately 350 base pairs upstream of the major initiation sites for c-fms transcription in placental trophoblasts.


Blood ◽  
1995 ◽  
Vol 85 (1) ◽  
pp. 179-185 ◽  
Author(s):  
JC Winkelmann ◽  
J Ward ◽  
P Mayeux ◽  
C Lacombe ◽  
L Schimmenti ◽  
...  

We previously identified a translocation breakpoint in exon 8 of the erythropoietin receptor (EpoR) gene in TF-1 cells, a cell line derived from a human erythroleukemia. To investigate the potential pathogenetic significance of this abnormality, we more precisely mapped the breakpoint within exon 8 and studied the expression of the translocated gene by S1 nuclease mapping of EpoR transcripts and chemical crosslinking of labeled erythropoietin (Epo) to TF-1 cell surface receptors. Transcripts from the abnormal gene were found to be highly expressed in relation to normal EpoR transcripts in TF-1 cells. The breakpoint predicted by S1 mapping of abnormal EpoR transcripts agreed closely with that determined by Southern analysis. Chemical cross- linking of 125I-Epo to TF-1 cells showed an abnormal, low-molecular- weight cross-linked species directly recognized by anti-EpoR antibodies and present in considerable excess over the normal EpoR. Karyotype analysis showed that each of 10 TF-1 cell metaphases had, in addition to multiple other alterations, one chromosome 19 with additional chromosomal material translocated onto the short arm at 19p13.3, the location of the EpoR gene. We conclude that the structurally abnormal EpoR gene in TF-1 cells is highly expressed and produces an abnormal protein. We speculate that the chromosomal material brought into the EpoR locus by translocation is responsible for the high level of expression. We hypothesize that this translocation participated in the evolution of the erythroleukemia from which TF-1 cells were derived.


1989 ◽  
Vol 9 (12) ◽  
pp. 5340-5349
Author(s):  
H Miller ◽  
C Asselin ◽  
D Dufort ◽  
J Q Yang ◽  
K Gupta ◽  
...  

A block to elongation of transcription has been shown to occur within the first exon of the human and murine c-myc genes. The extent of this block was found to vary with the physiological state of cells, indicating that modulation of the transcriptional block can serve to control the expression of this gene. To determine which sequences are required in cis for the transcriptional block, we generated a series of constructs containing various portions of murine c-myc 5'-flanking and exon 1 sequences. We established populations of HeLa and CV-1 cells stably transfected with these constructs. The transcription start sites were determined by S1 nuclease mapping analysis, and the extent of transcriptional block was measured by nuclear run-on transcription assays. Our results demonstrate that at least two cis-acting elements are necessary for the transcriptional block. A 3' element was found to be located in the region where transcription stopped and showed features reminiscent of some termination sites found in procaryotes. A 5' element was positioned between the P1 and P2 (C. Asselin, A. Nepveu, and K. B. Marcu, Oncogene 4:549-558, 1989). Removal of the more 3' binding site abolished the transcriptional block.


1989 ◽  
Vol 9 (12) ◽  
pp. 5340-5349 ◽  
Author(s):  
H Miller ◽  
C Asselin ◽  
D Dufort ◽  
J Q Yang ◽  
K Gupta ◽  
...  

A block to elongation of transcription has been shown to occur within the first exon of the human and murine c-myc genes. The extent of this block was found to vary with the physiological state of cells, indicating that modulation of the transcriptional block can serve to control the expression of this gene. To determine which sequences are required in cis for the transcriptional block, we generated a series of constructs containing various portions of murine c-myc 5'-flanking and exon 1 sequences. We established populations of HeLa and CV-1 cells stably transfected with these constructs. The transcription start sites were determined by S1 nuclease mapping analysis, and the extent of transcriptional block was measured by nuclear run-on transcription assays. Our results demonstrate that at least two cis-acting elements are necessary for the transcriptional block. A 3' element was found to be located in the region where transcription stopped and showed features reminiscent of some termination sites found in procaryotes. A 5' element was positioned between the P1 and P2 (C. Asselin, A. Nepveu, and K. B. Marcu, Oncogene 4:549-558, 1989). Removal of the more 3' binding site abolished the transcriptional block.


1983 ◽  
Vol 3 (8) ◽  
pp. 1501-1510 ◽  
Author(s):  
L H Bowman ◽  
W E Goldman ◽  
G I Goldberg ◽  
M B Hebert ◽  
D Schlessinger

The locations of three cleavages that can occur in mouse 45S pre-rRNA were determined by Northern blot hybridization and S1 nuclease mapping techniques. These experiments indicate that an initial cleavage of 45S pre-rRNA can directly generate the mature 5' terminus of 18S rRNA. Initial cleavage of 45S pre-rRNA can also generate the mature 5' terminus of 5.8S rRNA, but in this case cleavage can occur at two different locations, one at the known 5' terminus of 5.8S rRNA and another 6 or 7 nucleotides upstream. This pattern of cleavage results in the formation of cytoplasmic 5.8S rRNA with heterogeneous 5' termini. Further, our results indicate that one pathway for the formation of the mature 5' terminus of 28S rRNA involves initial cleavages within spacer sequences followed by cleavages which generate the mature 5' terminus of 28S rRNA. Comparison of these different patterns of cleavage for mouse pre-rRNA with that for Escherichia coli pre-rRNA implies that there are fundamental differences in the two processing mechanisms. Further, several possible cleavage signals have been identified by comparing the cleavage sites with the primary and secondary structure of mouse rRNA (see W. E. Goldman, G. Goldberg, L. H. Bowman, D. Steinmetz, and D. Schlessinger, Mol. Cell. Biol. 3:1488-1500, 1983).


1985 ◽  
Vol 5 (1) ◽  
pp. 17-26
Author(s):  
L Naumovski ◽  
G Chu ◽  
P Berg ◽  
E C Friedberg

We determined the complete nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae. The coding region of the gene contained 2,334 base pairs that could encode a protein with a calculated molecular weight of 89,796. Analysis of RAD3 mRNA by Northern blots and by S1 nuclease mapping indicated that the transcript was approximately 2.5 kilobases and did not contain intervening sequences. Fusions between the RAD3 gene and the lac'Z gene of Escherichia coli were constructed and used to demonstrate that the RAD3 gene was not inducible by DNA damage caused by UV radiation or 4-nitroquinoline-1-oxide. Two UV-sensitive chromosomal mutant alleles of RAD3, rad3-1 and rad3-2, were rescued by gap repair of a centromeric plasmid, and their sequences were determined. The rad3-1 mutation changed a glutamic acid to lysine, and the rad3-2 mutation changed a glycine to arginine. Previous studies have shown that disruption of the RAD3 gene results in loss of an essential function and is associated with inviability of haploid cells. In the present experiments, plasmids carrying the rad3-1 and rad3-2 mutations were introduced into haploid cells containing a disrupted RAD3 gene. These plasmids expressed the essential function of RAD3 but not its DNA repair function. A 74-base-pair deletion at the 3' end of the RAD3 coding region or a fusion of this deletion to the E. coli lac'Z gene did not affect either function of RAD3.


1983 ◽  
Vol 3 (8) ◽  
pp. 1501-1510
Author(s):  
L H Bowman ◽  
W E Goldman ◽  
G I Goldberg ◽  
M B Hebert ◽  
D Schlessinger

The locations of three cleavages that can occur in mouse 45S pre-rRNA were determined by Northern blot hybridization and S1 nuclease mapping techniques. These experiments indicate that an initial cleavage of 45S pre-rRNA can directly generate the mature 5' terminus of 18S rRNA. Initial cleavage of 45S pre-rRNA can also generate the mature 5' terminus of 5.8S rRNA, but in this case cleavage can occur at two different locations, one at the known 5' terminus of 5.8S rRNA and another 6 or 7 nucleotides upstream. This pattern of cleavage results in the formation of cytoplasmic 5.8S rRNA with heterogeneous 5' termini. Further, our results indicate that one pathway for the formation of the mature 5' terminus of 28S rRNA involves initial cleavages within spacer sequences followed by cleavages which generate the mature 5' terminus of 28S rRNA. Comparison of these different patterns of cleavage for mouse pre-rRNA with that for Escherichia coli pre-rRNA implies that there are fundamental differences in the two processing mechanisms. Further, several possible cleavage signals have been identified by comparing the cleavage sites with the primary and secondary structure of mouse rRNA (see W. E. Goldman, G. Goldberg, L. H. Bowman, D. Steinmetz, and D. Schlessinger, Mol. Cell. Biol. 3:1488-1500, 1983).


1983 ◽  
Vol 3 (11) ◽  
pp. 1889-1897
Author(s):  
R G Buckholz ◽  
T G Cooper

The URA3 gene from Saccharomyces cerevisiae is localized on a 1.1-kilobase (kb) DNA fragment. By using this fragment as a hybridization probe, we found that oxalurate, a gratuitous inducer of the allantoin degradative system, also serves to induce URA3 specific RNA. This response is restricted to oxalurate; other conditions which bring about high-level synthesis of the allantoin degradative enzymes did not produce the effect. Two classes of RNA (1.0 and 1.5 kb) were found to be oxalurate induced. Both classes are encoded by the URA3 gene, overlap, and probably do not significantly differ at their 5' termini. Northern blot mapping of the transcripts indicated that the 1.5-kb transcript was likely encoded by sequences extending up to 0.5 kb downstream from the 3' terminus of the 1.0-kb transcript. Analysis of the endpoints of the major 1.0-kb URA3 transcript by S1 nuclease mapping revealed the existence of two 5' termini, separated by 5 to 10 nucleotides, and seven 3' termini, separated by 5 to 20 nucleotides each, over a range of about 70 bases.


Sign in / Sign up

Export Citation Format

Share Document