scholarly journals Expanding the Known Repertoire of C-Type Lectin Receptors Binding to Toxoplasma gondii Oocysts Using a Modified High-Resolution Immunofluorescence Assay

mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Benedikt T. Fabian ◽  
Bernd Lepenies ◽  
Gereon Schares ◽  
Jitender P. Dubey ◽  
Furio Spano ◽  
...  

ABSTRACT The environmental stage of the apicomplexan Toxoplasma gondii oocyst is vital to its life cycle but largely understudied. Because oocysts are excreted only by infected felids, their availability for research is limited. We report the adaptation of an agarose-based method to immobilize minute amounts of oocysts to perform immunofluorescence assays. Agarose embedding allows high-resolution confocal microscopy imaging of antibodies binding to the oocyst surface as well as unprecedented imaging of intracellular sporocyst structures with Maclura pomifera agglutinin after on-slide permeabilization of the immobilized oocysts. To identify new possible molecules binding to the oocyst surface, we used this method to screen a library of C-type lectin receptor (CLR)-human IgG constant region fusion proteins from the group of related CLRs called the Dectin-1 cluster against oocysts. In addition to CLEC7A that was previously reported to decorate T. gondii oocysts, we present experimental evidence for specific binding of three additional CLRs to the surface of this stage. We discuss how these CLRs, known to be expressed on neutrophils, dendritic cells, or macrophages, could be involved in the early immune response by the host, such as oocyst antigen uptake in the intestine. In conclusion, we present a modified immunofluorescence assay technique that allows material-saving immunofluorescence microscopy with T. gondii oocysts in a higher resolution than previously published, which allowed us to describe three additional CLRs binding specifically to the oocyst surface. IMPORTANCE Knowledge of oocyst biology of Toxoplasma gondii is limited, not the least due to its limited availability. We describe a method that permits us to process minute amounts of oocysts for immunofluorescence microscopy without compromising their structural properties. This method allowed us to visualize internal structures of sporocysts by confocal microscopy in unprecedented quality. Moreover, the method can be used as a low- to medium-throughput method to screen for molecules interacting with oocysts, such as antibodies, or compounds causing structural damage to oocysts (i.e., disinfectants). Using this method, we screened a small library of C-type lectin receptors (CLRs) present on certain immune cells and found three CLRs able to decorate the oocyst wall of T. gondii and which were not known before to bind to oocysts. These tools will allow further study into oocyst wall composition and could also provoke experiments regarding immunological recognition of oocysts.

mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Xiaoyu Hu ◽  
William J. O’Shaughnessy ◽  
Tsebaot G. Beraki ◽  
Michael L. Reese

ABSTRACT Mitogen-activated protein kinases (MAPKs) are a conserved family of protein kinases that regulate signal transduction, proliferation, and development throughout eukaryotes. The apicomplexan parasite Toxoplasma gondii expresses three MAPKs. Two of these, extracellular signal-regulated kinase 7 (ERK7) and MAPKL1, have been implicated in the regulation of conoid biogenesis and centrosome duplication, respectively. The third kinase, MAPK2, is specific to and conserved throughout the Alveolata, although its function is unknown. We used the auxin-inducible degron system to determine phenotypes associated with MAPK2 loss of function in Toxoplasma. We observed that parasites lacking MAPK2 failed to duplicate their centrosomes and therefore did not initiate daughter cell budding, which ultimately led to parasite death. MAPK2-deficient parasites initiated but did not complete DNA replication and arrested prior to mitosis. Surprisingly, the parasites continued to grow and replicate their Golgi apparatus, mitochondria, and apicoplasts. We found that the failure in centrosome duplication is distinct from the phenotype caused by the depletion of MAPKL1. As we did not observe MAPK2 localization at the centrosome at any point in the cell cycle, our data suggest that MAPK2 regulates a process at a distal site that is required for the completion of centrosome duplication and the initiation of parasite mitosis. IMPORTANCE Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that can cause severe and fatal disease in immunocompromised patients and the developing fetus. Rapid parasite replication is critical for establishing a productive infection. Here, we demonstrate that a Toxoplasma protein kinase called MAPK2 is conserved throughout the Alveolata and essential for parasite replication. We found that parasites lacking MAPK2 protein were defective in the initiation of daughter cell budding and were rendered inviable. Specifically, T. gondii MAPK2 (TgMAPK2) appears to be required for centrosome replication at the basal end of the nucleus, and its loss causes arrest early in parasite division. MAPK2 is unique to the Alveolata and not found in metazoa and likely is a critical component of an essential parasite-specific signaling network.


2021 ◽  
Vol 184 ◽  
pp. 106188
Author(s):  
Tahereh Azimpour-Ardakan ◽  
Reza Fotouhi-Ardakani ◽  
Nasser Hoghooghi-Rad ◽  
Nourdehr Rokni ◽  
Abbasali Motallebi

mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Maude F. Lévêque ◽  
Laurence Berry ◽  
Michael J. Cipriano ◽  
Hoa-Mai Nguyen ◽  
Boris Striepen ◽  
...  

ABSTRACT Autophagy is a catabolic process widely conserved among eukaryotes that permits the rapid degradation of unwanted proteins and organelles through the lysosomal pathway. This mechanism involves the formation of a double-membrane structure called the autophagosome that sequesters cellular components to be degraded. To orchestrate this process, yeasts and animals rely on a conserved set of autophagy-related proteins (ATGs). Key among these factors is ATG8, a cytoplasmic protein that is recruited to nascent autophagosomal membranes upon the induction of autophagy. Toxoplasma gondii is a potentially harmful human pathogen in which only a subset of ATGs appears to be present. Although this eukaryotic parasite seems able to generate autophagosomes upon stresses such as nutrient starvation, the full functionality and biological relevance of a canonical autophagy pathway are as yet unclear. Intriguingly, in T. gondii, ATG8 localizes to the apicoplast under normal intracellular growth conditions. The apicoplast is a nonphotosynthetic plastid enclosed by four membranes resulting from a secondary endosymbiosis. Using superresolution microscopy and biochemical techniques, we show that TgATG8 localizes to the outermost membrane of this organelle. We investigated the unusual function of TgATG8 at the apicoplast by generating a conditional knockdown mutant. Depletion of TgATG8 led to rapid loss of the organelle and subsequent intracellular replication defects, indicating that the protein is essential for maintaining apicoplast homeostasis and thus for survival of the tachyzoite stage. More precisely, loss of TgATG8 led to abnormal segregation of the apicoplast into the progeny because of a loss of physical interactions of the organelle with the centrosomes. IMPORTANCE By definition, autophagy is a catabolic process that leads to the digestion and recycling of eukaryotic cellular components. The molecular machinery of autophagy was identified mainly in model organisms such as yeasts but remains poorly characterized in phylogenetically distant apicomplexan parasites. We have uncovered an unusual function for autophagy-related protein ATG8 in Toxoplasma gondii: TgATG8 is crucial for normal replication of the parasite inside its host cell. Seemingly unrelated to the catabolic autophagy process, TgATG8 associates with the outer membrane of the nonphotosynthetic plastid harbored by the parasite called the apicoplast, and there it plays an important role in the centrosome-driven inheritance of the organelle during cell division. This not only reveals an unexpected function for an autophagy-related protein but also sheds new light on the division process of an organelle that is vital to a group of important human and animal pathogens.


2010 ◽  
Vol 73 (12) ◽  
pp. 2239-2243 ◽  
Author(s):  
SUSANA BAYARRI ◽  
MARÍA J. GRACIA ◽  
REGINA LÁZARO ◽  
CONSUELO PÉREZ-ARQUILLUÉ ◽  
MONTSERRAT BARBERÁN ◽  
...  

Toxoplasmosis is a zoonotic disease caused by the protozoan Toxoplasma gondii and distributed worldwide. Ingestion of viable cysts from infected raw or undercooked meat is an important route of horizontal transmission of the parasite to humans. Little information is available concerning the effect of commercial curing on cysts of T. gondii. This study is the first in which the influence of processing of cured ham on the viability of T. gondii has been evaluated, using bioassay to assess the risk of infection from eating this meat product. Naturally infected pigs were selected for the study, and a mouse concentration bioassay technique was used to demonstrate viable bradyzoites of T. gondii in porcine tissues and hams. No viable parasites were found in the final product (14 months of curing) based on results of the indirect immunofluorescence assay and histological and PCR analyses. Our results indicate that the consumption of hams cured as described here poses an insignificant risk of acquiring toxoplasmosis. However, additional studies are required to evaluate the safety of ham products cured under different conditions of curing time, salt, and nitrite concentration.


2016 ◽  
Vol 55 (3) ◽  
pp. 844-858 ◽  
Author(s):  
Per Sikora ◽  
Sofia Andersson ◽  
Jadwiga Winiecka-Krusnell ◽  
Björn Hallström ◽  
Cecilia Alsmark ◽  
...  

ABSTRACTIn order to improve genotyping and epidemiological analysis ofCryptosporidiumspp., genomic data need to be generated directly from a broad range of clinical specimens. Utilizing a robust method that we developed for the purification and generation of amplified target DNA, we present its application for the successful isolation and whole-genome sequencing of 14 differentCryptosporidium hominispatient specimens. Six isolates of subtype IbA10G2 were analyzed together with a single representative each of 8 other subtypes: IaA20R3, IaA23R3, IbA9G3, IbA13G3, IdA14, IeA11G3T3, IfA12G1, and IkA18G1. Parasite burden was measured over a range of more than 2 orders of magnitude for all samples, while the genomes were sequenced to mean depths of between 17× and 490× coverage. Sequence homology-based functional annotation identified several genes of interest, including the gene encodingCryptosporidiumoocyst wall protein 9 (COWP9), which presented a predicted loss-of-function mutation in all the sequence subtypes, except for that seen with IbA10G2, which has a sequence identical to theCryptosporidium parvumreference Iowa II sequence. Furthermore, phylogenetic analysis showed that all the IbA10G2 genomes form a monophyletic clade in theC. hoministree as expected and yet display some heterogeneity within the IbA10G2 subtype. The current report validates the aforementioned method for isolating and sequencingCryptosporidiumdirectly from clinical stool samples. In addition, the analysis demonstrates the potential in mining data generated from sequencing multiple whole genomes ofCryptosporidiumfrom human fecal samples, while alluding to the potential for a higher degree of genotyping withinCryptosporidiumepidemiology.


2021 ◽  
pp. 108706
Author(s):  
Guoliang Wang ◽  
Xiaoya An ◽  
Xiaoping Zhou ◽  
Mengyi Jin ◽  
Xuemei Wang ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shi Zhao ◽  
Tien-Fu Lu ◽  
Larissa Statsenko ◽  
Benjamin Koch ◽  
Chris Garcia

Purpose In the mining industry, a run-of-mine (ROM) stockpile is a temporary storage unit, but it is also widely accepted as an effective method to reduce the short-term variations of ore grade. However, tracing ore grade at ROM stockpiles accurately using most current fleet management systems is challenging, due to insufficient information available in real time. This study aims to build a three-dimensional (3D) model for ROM stockpiles continuously based on fine-grained grade information through integrating data from a number of ore grade tracking sources. Design/methodology/approach Following a literature review, a framework for a new stockpile management system is proposed. In this system, near real-time high-resolution 3D ROM stockpile models are created based on dump/load locations measured from global positioning system sensors. Each stockpile model contains a group of layers which are separated by different qualities. Findings Acquiring the geometric shapes of all the layers in a stockpile and cuts made by front wheel loaders provides a better understanding about the quality and quality distribution within a stockpile when it is stacked/reclaimed. Such a ROM stockpile model can provide information on predicating ore blend quality with high accuracy and high efficiency. Furthermore, a 3D stockyard model created based on such ROM stockpile models can help organisations optimise material flow and reduce the cost. Research limitations/implications The modelling algorithm is evaluated using a laboratory scaled stockpile at this stage. The authors expect to scan a real stockpile and create a reference model from it. Meanwhile, the geometric model cannot represent slump or collapse during reclaiming faithfully. Therefore, the model is expected to be reconcile monthly using laser scanning data. Practical implications The proposed model is currently translated to the operations at OZ Minerals. The use of such model will reduce the handling costs and improve the efficiency of existing grade management systems in the mining industry. Originality/value This study provides a solution to build a near real-time high-resolution multi-layered 3D stockpile model through using currently available information and resources. Such novel and low-cost stockpile model will improve the production rates with good output product quality control.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Isra Alsaady ◽  
Ellen Tedford ◽  
Mohammad Alsaad ◽  
Greg Bristow ◽  
Shivali Kohli ◽  
...  

ABSTRACT Toxoplasma gondii is associated with physiological effects in the host. Dysregulation of catecholamines in the central nervous system has previously been observed in chronically infected animals. In the study described here, the noradrenergic system was found to be suppressed with decreased levels of norepinephrine (NE) in brains of infected animals and in infected human and rat neural cells in vitro. The mechanism responsible for the NE suppression was found to be downregulation of dopamine β-hydroxylase (DBH) gene expression, encoding the enzyme that synthesizes norepinephrine from dopamine, with downregulation observed in vitro and in infected brain tissue, particularly in the dorsal locus coeruleus/pons region. The downregulation was sex specific, with males expressing reduced DBH mRNA levels whereas females were unchanged. Rather, DBH expression correlated with estrogen receptor in the female rat brains for this estrogen-regulated gene. DBH silencing was not a general response of neurons to infection, as human cytomegalovirus did not downregulate DBH expression. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically infected animals, with a high correlation between DBH expression and infection intensity. A decrease in DBH expression in noradrenergic neurons can elevate dopamine levels, which provides a possible explanation for mixed observations of changes in this neurotransmitter with infection. Decreased NE is consistent with the loss of coordination and motor impairments associated with toxoplasmosis. Further, the altered norepinephrine synthesis observed here may, in part, explain behavioral effects of infection and associations with mental illness.


Sign in / Sign up

Export Citation Format

Share Document