scholarly journals Downregulation of the Central Noradrenergic System by Toxoplasma gondii Infection

2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Isra Alsaady ◽  
Ellen Tedford ◽  
Mohammad Alsaad ◽  
Greg Bristow ◽  
Shivali Kohli ◽  
...  

ABSTRACT Toxoplasma gondii is associated with physiological effects in the host. Dysregulation of catecholamines in the central nervous system has previously been observed in chronically infected animals. In the study described here, the noradrenergic system was found to be suppressed with decreased levels of norepinephrine (NE) in brains of infected animals and in infected human and rat neural cells in vitro. The mechanism responsible for the NE suppression was found to be downregulation of dopamine β-hydroxylase (DBH) gene expression, encoding the enzyme that synthesizes norepinephrine from dopamine, with downregulation observed in vitro and in infected brain tissue, particularly in the dorsal locus coeruleus/pons region. The downregulation was sex specific, with males expressing reduced DBH mRNA levels whereas females were unchanged. Rather, DBH expression correlated with estrogen receptor in the female rat brains for this estrogen-regulated gene. DBH silencing was not a general response of neurons to infection, as human cytomegalovirus did not downregulate DBH expression. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically infected animals, with a high correlation between DBH expression and infection intensity. A decrease in DBH expression in noradrenergic neurons can elevate dopamine levels, which provides a possible explanation for mixed observations of changes in this neurotransmitter with infection. Decreased NE is consistent with the loss of coordination and motor impairments associated with toxoplasmosis. Further, the altered norepinephrine synthesis observed here may, in part, explain behavioral effects of infection and associations with mental illness.

2018 ◽  
Author(s):  
Isra Alsaady ◽  
Ellen Tedford ◽  
Mohammad Alsaad ◽  
Greg Bristow ◽  
Shivali Kohli ◽  
...  

AbstractThe parasitic protozoan Toxoplasma gondii becomes encysted in brain and muscle tissue during chronic infection, a stage that was previously thought to be dormant but has been found to be active and associated with physiological effects in the host. Dysregulation of catecholamines in the CNS has previously been observed in chronically-infected animals. In the study described here, the noradrenergic system was suppressed with decreased levels of norepinephrine in brains of infected animals and in infected neuronal cells in vitro. Expression of dopamine β-hydroxylase (DBH), essential for synthesis of norepinephrine from dopamine, was the most differentially-expressed gene in infections in vitro and was down-regulated in infected brain tissue, particularly in the prefrontal cortex and dorsal locus coeruleus/pons region. The down-regulated DBH expression in infected rat catecholaminergic and human neuronal cells corresponded with decreased norepinephrine and increased dopamine. As the DBH suppression was observed in vitro, this effect is not caused by neuroinflammation. Silencing of DBH expression was specific for T. gondii infection and was not observed with CMV infection. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically-infected animals, with a high correlation between DBH expression and infection intensity. These findings together provide a plausible mechanism to explain prior discrepancies in changes to CNS neurotransmitters levels with infection. The suppression of norepinephrine synthesis observed here may, in part, explain behavioural effects of infection, associations with mental illness, and neurological consequences of infection such as the loss of coordination and motor impairments associated with human toxoplasmosis.


2013 ◽  
Vol 82 (3) ◽  
pp. 1315-1325 ◽  
Author(s):  
Lauren M. Lilly ◽  
Michaella Scopel ◽  
Michael P. Nelson ◽  
Ashley R. Burg ◽  
Chad W. Dunaway ◽  
...  

ABSTRACTExposure to the moldAspergillus fumigatusmay result in allergic bronchopulmonary aspergillosis, chronic necrotizing pulmonary aspergillosis, or invasive aspergillosis (IA), depending on the host's immune status. Neutrophil deficiency is the predominant risk factor for the development of IA, the most life-threatening condition associated withA. fumigatusexposure. Here we demonstrate that in addition to neutrophils, eosinophils are an important contributor to the clearance ofA. fumigatusfrom the lung. AcuteA. fumigatuschallenge in normal mice induced the recruitment of CD11b+Siglec F+Ly-6GloLy-6CnegCCR3+eosinophils to the lungs, which was accompanied by an increase in lungEpx(eosinophil peroxidase) mRNA levels. Mice deficient in the transcription factor dblGATA1, which exhibit a selective deficiency in eosinophils, demonstrated impairedA. fumigatusclearance and evidence of germinating organisms in the lung. Higher burden correlated with lower mRNA expression ofEpx(eosinophil peroxidase) andPrg2(major basic protein) as well as lower interleukin 1β (IL-1β), IL-6, IL-17A, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and CXCL1 levels. However, examination of lung inflammatory cell populations failed to demonstrate defects in monocyte/macrophage, dendritic cell, or neutrophil recruitment in dblGATA1-deficient mice, suggesting that the absence of eosinophils in dlbGATA1-deficient mice was the sole cause of impaired lung clearance. We show that eosinophils generated from bone marrow have potent killing activity againstA. fumigtausin vitro, which does not require cell contact and can be recapitulated by eosinophil whole-cell lysates. Collectively, our data support a role for eosinophils in the lung response afterA. fumigatusexposure.


mSystems ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Jenny Lutshumba ◽  
Eri Ochiai ◽  
Qila Sa ◽  
Namrata Anand ◽  
Yasuhiro Suzuki

ABSTRACT We recently found that an invasion of CD8+ cytotoxic T cells into tissue cysts of Toxoplasma gondii initiates an elimination of the cysts in association with an accumulation of microglia and macrophages. In the present study, we compared mRNA levels for 734 immune-related genes in the brains of infected SCID mice that received perforin-sufficient or -deficient CD8+ immune T cells at 3 weeks after infection. At 7 days after the T cell transfer, mRNA levels for only six genes were identified to be greater in the recipients of the perforin-sufficient T cells than in the recipients of the perforin-deficient T cells. These six molecules included two T cell costimulatory molecules, inducible T cell costimulator receptor (ICOS) and its ligand (ICOSL); two chemokine receptors, C-X-C motif chemokine receptor 3 (CXCR3) and CXCR6; and two molecules related to an activation of microglia and macrophages, interleukin 18 receptor 1 (IL-18R1) and chitinase-like 3 (Chil3). Consistently, a marked reduction of cyst numbers and upregulation of ICOS, CXCR3, CXCR6, IL-18R1, and Chil3 mRNA levels were also detected when the perforin-sufficient CD8+ immune T cells were transferred to infected SCID mice at 6 weeks after infection, indicating that the CD8+ T cell-mediated protective immunity is capable of eliminating mature T. gondii cysts. These results together suggest that ICOS-ICOSL interactions are crucial for activating CD8+ cytotoxic immune T cells to initiate the destruction of T. gondii cysts and that CXCR3, CXCR6, and IL-18R are involved in recruitment and activation of microglia and macrophages to the T cell-attacked cysts for their elimination. IMPORTANCE T. gondii establishes a chronic infection by forming tissue cysts, which can grow into sizes greater than 50 μm in diameter as a consequence of containing hundreds to thousands of organisms surrounded by the cyst wall within infected cells. Our recent studies using murine models uncovered that CD8+ cytotoxic T cells penetrate into the cysts in a perforin-dependent manner and induce their elimination, which is accompanied with an accumulation of phagocytic cells to the T cell-attacked target. This is the first evidence of the ability of the T cells to invade into a large target for its elimination. However, the mechanisms involved in anticyst immunity remain unclear. Immune profiling analyses of 734 immune-related genes in the present study provided a valuable foundation to initiate elucidating detailed molecular mechanisms of the novel effector function of the immune system operated by perforin-mediated invasion of CD8+ T cells into large targets for their elimination.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Geetha Kannan ◽  
Manlio Di Cristina ◽  
Aric J. Schultz ◽  
My-Hang Huynh ◽  
Fengrong Wang ◽  
...  

ABSTRACT Toxoplasma gondii is a ubiquitous pathogen that can cause encephalitis, congenital defects, and ocular disease. T. gondii has also been implicated as a risk factor for mental illness in humans. The parasite persists in the brain as slow-growing bradyzoites contained within intracellular cysts. No treatments exist to eliminate this form of parasite. Although proteolytic degradation within the parasite lysosome-like vacuolar compartment (VAC) is critical for bradyzoite viability, whether other aspects of the VAC are important for parasite persistence remains unknown. An ortholog of Plasmodium falciparum chloroquine resistance transporter (CRT), TgCRT, has previously been identified in T. gondii. To interrogate the function of TgCRT in chronic-stage bradyzoites and its role in persistence, we knocked out TgCRT in a cystogenic strain and assessed VAC size, VAC digestion of host-derived proteins and parasite autophagosomes, and the viability of in vitro and in vivo bradyzoites. We found that whereas parasites deficient in TgCRT exhibit normal digestion within the VAC, they display a markedly distended VAC and their viability is compromised both in vitro and in vivo. Interestingly, impairing VAC proteolysis in TgCRT-deficient bradyzoites restored VAC size, consistent with a role for TgCRT as a transporter of products of digestion from the VAC. In conjunction with earlier studies, our current findings suggest a functional link between TgCRT and VAC proteolysis. This study provides further evidence of a crucial role for the VAC in bradyzoite persistence and a new potential VAC target to abate chronic Toxoplasma infection. IMPORTANCE Individuals chronically infected with the intracellular parasite Toxoplasma gondii are at risk of experiencing reactivated disease that can result in progressive loss of vision. No effective treatments exist for chronic toxoplasmosis due in part to a poor understanding of the biology underlying chronic infection and a lack of well-validated potential targets. We show here that a T. gondii transporter is functionally linked to protein digestion within the parasite lysosome-like organelle and that this transporter is necessary to sustain chronic infection in culture and in experimentally infected mice. Ablating the transporter results in severe bloating of the lysosome-like organelle. Together with earlier work, this study suggests the parasite’s lysosome-like organelle is vital for parasite survival, thus rendering it a potential target for diminishing infection and reducing the risk of reactivated disease.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Roberto Sánchez-Sánchez ◽  
Ignacio Ferre ◽  
Michela Re ◽  
Juan José Ramos ◽  
Javier Regidor-Cerrillo ◽  
...  

ABSTRACT Previous studies on drug efficacy showed low protection against abortion and vertical transmission of Toxoplasma gondii in pregnant sheep. Bumped kinase inhibitors (BKIs), which are ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1), were shown to be highly efficacious against several apicomplexan parasites in vitro and in laboratory animal models. Here, we present the safety and efficacy of BKI-1294 treatment (dosed orally at 100 mg/kg of body weight 5 times every 48 h) initiated 48 h after oral infection of sheep at midpregnancy with 1,000 TgShSp1 oocysts. BKI-1294 demonstrated systemic exposure in pregnant ewes, with maximum plasma concentrations of 2 to 3 μM and trough concentrations of 0.4 μM at 48 h after each dose. Oral administration of BKI-1294 in uninfected sheep at midpregnancy was deemed safe, since there were no changes in behavior, fecal consistency, rectal temperatures, hematological and biochemical parameters, or fetal mortality/morbidity. In ewes infected with a T. gondii oocyst dose lethal for fetuses, BKI-1294 treatment led to a minor rectal temperature increase after infection and a decrease in fetal/lamb mortality of 71%. None of the lambs born alive in the treated group exhibited congenital encephalitis lesions, and vertical transmission was prevented in 53% of them. BKI-1294 treatment during infection led to strong interferon gamma production after cell stimulation in vitro and a low humoral immune response to soluble tachyzoite antigens but high levels of anti-SAG1 antibodies. The results demonstrate a proof of concept for the therapeutic use of BKI-1294 to protect ovine fetuses from T. gondii infection during pregnancy.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Jixu Li ◽  
Huanping Guo ◽  
Eloiza May Galon ◽  
Yang Gao ◽  
Seung-Hun Lee ◽  
...  

ABSTRACT Toxoplasma gondii is an obligate intracellular protozoan parasite and a successful parasitic pathogen in diverse organisms and host cell types. Hydroxylamine (HYD) and carboxymethoxylamine (CAR) have been reported as inhibitors of aspartate aminotransferases (AATs) and interfere with the proliferation in Plasmodium falciparum. Therefore, AATs are suggested as drug targets against Plasmodium. The T. gondii genome encodes only one predicted AAT in both T. gondii type I strain RH and type II strain PLK. However, the effects of HYD and CAR, as well as their relationship with AAT, on T. gondii remain unclear. In this study, we found that HYD and CAR impaired the lytic cycle of T. gondii in vitro, including the inhibition of invasion or reinvasion, intracellular replication, and egress. Importantly, HYD and CAR could control acute toxoplasmosis in vivo. Further studies showed that HYD and CAR could inhibit the transamination activity of rTgAAT in vitro. However, our results confirmed that deficiency of AAT in both RH and PLK did not reduce the virulence in mice, although the growth ability of the parasites was affected in vitro. HYD and CAR could still inhibit the growth of AAT-deficient parasites. These findings indicated that HYD and CAR inhibition of T. gondii growth and control of toxoplasmosis can occur in an AAT-independent pathway. Overall, further studies focusing on the elucidation of the mechanism of inhibition are warranted. Our study hints at new substrates of HYD and CAR as potential drug targets to inhibit T. gondii growth.


2016 ◽  
Vol 84 (5) ◽  
pp. 1262-1273 ◽  
Author(s):  
Shaojun Long ◽  
Qiuling Wang ◽  
L. David Sibley

Calcium-dependent protein kinases (CDPKs) are expanded in apicomplexan parasites, especially inToxoplasma gondiiwhere 14 separate genes encoding these enzymes are found. Although previous studies have shown that several CDPKs play a role in controlling invasion, egress, and cell division inT. gondii, the roles of most of these genes are unexplored. Here we developed a more efficient method for gene disruption using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) that was modified to completely delete large, multiexonic genes from the genome and to allow serial replacement by recycling of the selectable marker using Cre-loxP. Using this system, we generated a total of 24 mutants in type 1 and 2 genetic backgrounds to ascertain the functions of noncanonical CDPKs. Remarkably, although we were able to confirm the essentiality of CDPK1 and CDPK7, the majority of CDPKs had no discernible phenotype for growthin vitroor infection in the mouse model. The exception to this was CDPK6, loss of which leads to reduced plaquing, fitness defect in a competition assay, and reduced tissue cyst formation in chronically infected mice. Our findings highlight the utility of CRISPR/Cas9 for rapid serial gene deletion and also suggest that additional models are needed to reveal the functions of many genes inT. gondii.


2012 ◽  
Vol 56 (11) ◽  
pp. 5581-5590 ◽  
Author(s):  
Edwin T. Kamau ◽  
Ananth R. Srinivasan ◽  
Mark J. Brown ◽  
Matthew G. Fair ◽  
Erin J. Caraher ◽  
...  

ABSTRACTToxoplasma gondiiis a globally ubiquitous pathogen that can cause severe disease in immunocompromised humans and the developing fetus. Given the proven role ofToxoplasma-secreted kinases in the interaction ofToxoplasmawith its host cell, identification of novel kinase inhibitors could precipitate the development of new anti-Toxoplasmadrugs and define new pathways important for parasite survival. We selected a small (n= 527) but diverse set of putative kinase inhibitors and screened them for effects on the growth ofToxoplasmain vitro. We identified and validated 14 noncytotoxic compounds, all of which had 50% effective concentrations in the nanomolar to micromolar range. We further characterized eight of these compounds, four inhibitors and four enhancers, by determining their effects on parasite motility, invasion, and the likely cellular target (parasite or host cell). Only two compounds had an effect on parasite motility and invasion. All the inhibitors appeared to target the parasite, and interestingly, two of the enhancers appeared to rather target the host cell, suggesting modulation of host cell pathways beneficial for parasite growth. For the four inhibitors, we also tested their efficacy in a mouse model, where one compound proved potent. Overall, these 14 compounds represent a new and diverse set of small molecules that are likely targeting distinct parasite and host cell pathways. Future work will aim to characterize their molecular targets in both the host and parasite.


2011 ◽  
Vol 80 (3) ◽  
pp. 1156-1165 ◽  
Author(s):  
Viviana Pszenny ◽  
Paul H. Davis ◽  
Xing W. Zhou ◽  
Christopher A. Hunter ◽  
Vern B. Carruthers ◽  
...  

As an intracellular protozoan parasite,Toxoplasma gondiiis likely to exploit proteases for host cell invasion, acquisition of nutrients, avoidance of host protective responses, escape from the parasitophorous vacuole, differentiation, and other activities.T. gondiiserine protease inhibitor 1 (TgPI1) is the most abundantly expressed protease inhibitor in parasite tachyzoites. We show here that alternative splicing produces twoTgPI1 isoforms, both of which are secreted via dense granules into the parasitophorous vacuole shortly after invasion, become progressively more abundant over the course of the infectious cycle, and can be detected in the infected host cell cytoplasm. To investigateTgPI1 function, the endogenous genomic locus was disrupted in the RH strain background. ΔTgPI1 parasites replicate normally as tachyzoites but exhibit increased bradyzoite gene transcription and labeling of vacuoles withDolichos bifloruslectin under conditions promotingin vitrodifferentiation. The differentiation phenotype can be partially complemented by eitherTgPI1 isoform. Mice infected with the ΔTgPI1 mutant display ∼3-fold-increased parasite burden in the spleen and liver, and thisin vivophenotype is also complemented by eitherTgPI1 isoform. These results demonstrate thatTgPI1 influences both parasite virulence and bradyzoite differentiation, presumably by inhibiting parasite and/or host serine proteases.


2011 ◽  
Vol 11 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Samantha C. Halliwell ◽  
Matthew C. A. Smith ◽  
Philippa Muston ◽  
Sara L. Holland ◽  
Simon V. Avery

ABSTRACTWe investigated the relevance of gene expression heterogeneity to virulence properties of a major fungal pathogen,Candida glabrata. The organism's key virulence-associated factors include glycosylphosphatidylinositol-anchored adhesins, encoded subtelomerically by theEPAgene family. Individual-cell analyses of expression revealed very striking heterogeneity for Epa1, an adhesin that mediates ∼95% of adherence to epithelial cellsin vitro. The heterogeneity in Epa1 was markedly greater than that known for other yeast genes. Sorted cells expressing high or low levels of Epa1 exhibited high and low adherence to epithelial cells, indicating a link between gene expression noise and potential virulence. The phenotypes of sorted subpopulations reverted to mixed phenotypes within a few generations. Variation in single-cell Epa1 protein and mRNA levels was correlated, consistent with transcriptional regulation of heterogeneity. Sir-dependent transcriptional silencing was the primary mechanism driving heterogeneous Epa1 expression inC. glabrataBG2, but not in CBS138 (ATCC 2001). Inefficient silencing in the latter strain was not due to a difference inEPA1sequence or (sub)telomere length and was overcome by ectopicSIR3expression. Moreover, differences between strains in the silencing dependence ofEPA1expression were evident across a range of clinical isolates, with heterogeneity being the greatest in strains whereEPA1was subject to silencing. The study shows how heterogeneity can impact the virulence-related properties ofC. glabratacell populations, with potential implications for microbial pathogenesis more broadly.


Sign in / Sign up

Export Citation Format

Share Document