noradrenergic system
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 54)

H-INDEX

49
(FIVE YEARS 4)

Author(s):  
Soichiro Tsutsumi ◽  
Takuya Watanabe ◽  
Akinobu Hatae ◽  
Marika Hirata ◽  
Hiroya Omori ◽  
...  

Author(s):  
Klockner Géssica De Mattos Diosti ◽  
Lovato Fernanda Christo ◽  
Rebouças Rebeca Loureiro ◽  
Langer Laura Ingrid Volkweis ◽  
Hoegen Ingrid Oliveira ◽  
...  

2021 ◽  
Author(s):  
Rong Ye ◽  
Frank Hubert Hezemans ◽  
Claire O'Callaghan ◽  
Kamen A Tsvetanov ◽  
Catarina Rua ◽  
...  

Parkinson's disease and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals, and have been linked with worse prognosis and lack of improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus noradrenergic system. Here we test the hypothesis that loss of structural integrity of the locus coeruleus explains response inhibition deficits in progressive supranuclear palsy and Parkinson's disease. This cross-sectional observational study recruited 24 people with idiopathic Parkinson's disease, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls. All participants undertook a stop-signal task and ultrahigh field 7T-magnetic transfer weighted imaging of the locus coeruleus. Hierarchical Bayesian estimation of the parameters of 'race models' of go- versus stop-decisions was used to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between locus coeruleus integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. Progressive supranuclear palsy caused a distinct pattern of abnormalities in inhibitory control, relative to Parkinson's disease and healthy controls, with a paradoxically reduced threshold for go responses, but longer non-decision times, and more lapses of attention. The variation in response inhibition correlated with variation in the integrity of the locus coeruleus, across participants in both clinical groups. Structural imaging of the locus coeruleus, coupled with behavioural modelling in parkinsonian disorders, confirms that locus coeruleus integrity is associated with response inhibition and its degeneration contributes to neurobehavioural changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimisation of noradrenergic treatment is likely to benefit from stratification according to locus coeruleus integrity.


2021 ◽  
Vol 22 (20) ◽  
pp. 11086
Author(s):  
Jacopo Pruccoli ◽  
Antonia Parmeggiani ◽  
Duccio Maria Cordelli ◽  
Marcello Lanari

Noradrenaline (NE) is a catecholamine acting as both a neurotransmitter and a hormone, with relevant effects in modulating feeding behavior and satiety. Several studies have assessed the relationship between the noradrenergic system and Eating Disorders (EDs). This systematic review aims to report the existing literature on the role of the noradrenergic system in the development and treatment of EDs. A total of 35 studies were included. Preclinical studies demonstrated an involvement of the noradrenergic pathways in binge-like behaviors. Genetic studies on polymorphisms in genes coding for NE transporters and regulating enzymes have shown conflicting evidence. Clinical studies have reported non-unanimous evidence for the existence of absolute alterations in plasma NE values in patients with Anorexia Nervosa (AN) and Bulimia Nervosa (BN). Pharmacological studies have documented the efficacy of noradrenaline-modulating therapies in the treatment of BN and Binge Eating Disorder (BED). Insufficient evidence was found concerning the noradrenergic-mediated genetics of BED and BN, and psychopharmacological treatments targeting the noradrenergic system in AN. According to these data, further studies are required to expand the existing knowledge on the noradrenergic system as a potential target for treatments of EDs.


Author(s):  
Linn K. Kuehl ◽  
Christian E. Deuter ◽  
Jan Nowacki ◽  
Lisa Ueberrueck ◽  
Katja Wingenfeld ◽  
...  

Abstract Rationale Major depressive disorder (MDD) is a severe mental disorder with affective, cognitive, and somatic symptoms. Mood congruent cognitive biases, including a negative attentional bias, are important for development, maintenance, and recurrence of depressive symptoms. MDD is associated with maladaptive changes in the biological stress systems such as dysregulations of central noradrenergic alpha2-receptors in the locus coeruleus-noradrenergic system, which can affect cognitive processes including attention. Patients with adverse childhood experiences (ACE), representing severe stress experiences in early life, might be particularly affected. Objectives With an experimental design, we aimed to gain further knowledge about the role of noradrenergic activity for attentional bias in MDD patients with and without ACE. Methods We tested the effect of increased noradrenergic activity induced by the alpha2-receptor blocker yohimbine on attentional bias in a placebo-controlled repeated measures design. Four groups were included as follows: MDD patients with and without ACE, and healthy participants with and without ACE (total N = 128, all without antidepressant medication). Results A significant effect of MDD on attentional bias scores of sad face pictures (p = .037) indicated a facilitated attentional processing of sad face pictures in MDD patients (compared to non-MDD individuals). However, we found no such effect of ACE. For attentional bias of happy face pictures, we found no significant effects of MDD and ACE. Even though a higher increase of blood pressure and salivary alpha-amylase following yohimbine compared to placebo indicated successful noradrenergic stimulation, we found no significant effects of yohimbine on attentional bias of happy or sad face pictures. Conclusions Our results are consistent with the hypothesis of a negative attentional bias in MDD patients. However, as we found no effect of ACE or yohimbine, further research is needed to understand the mechanisms by which ACE increases the risk of MDD and to understand the biological basis of the MDD-related negative attentional bias.


2021 ◽  
Author(s):  
Elisa Lancini ◽  
Lena Haag ◽  
Franziska Bartl ◽  
Maren Rühling ◽  
Nicholas J Ashton ◽  
...  

The noradrenergic system shows pathological modifications in aging and neurodegenerative diseases and is thought to be affected in the early stages of both Alzheimer and Parkinson's diseases. We conducted a meta-analysis of noradrenergic differences in Alzheimer's disease type dementia (ADD) and Parkinson's disease (PD) using CSF and PET biomarkers. CSF noradrenaline (NA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) as well as NA transporter availability (PET MeNER) levels in controls, ADD and PD patients was summarized from 26 articles (1025 patients and 839 controls in total) using a random-effects model meta-analysis. Compared with controls, PD patients showed significant reductions in CSF NA and MHPG, and PET MeNER binding in the hypothalamus. In ADD, MHPG levels were increased compared with controls. Age correlated with CSF MHPG levels in ADD, but not in PD. Noradrenergic dysfunction in neurodegenerative diseases can be detected using CSF or PET measures and may be more pronounced in PD compared to ADD.


2021 ◽  
Author(s):  
Sara N Gallant ◽  
Briana L Kennedy ◽  
Shelby L Bachman ◽  
Ringo Huang ◽  
Tae-Ho Lee ◽  
...  

During a challenge or emotional experience, increases in arousal help us focus on the most salient or relevant details and ignore distracting stimuli. The noradrenergic system integrates signals about arousal states throughout the brain and helps coordinate this adaptive attentional selectivity. However, age-related changes in the noradrenergic system and attention networks in the brain may reduce the efficiency of arousal to modulate selective processing in older adults. In the current neuroimaging study, we examined age differences in how arousal affects bottom-up attention to category-selective stimuli differing in perceptual salience. We found a dissociation in how arousal modulates selective processing in the young and older brain. In young adults, emotionally arousing sounds enhanced selective incidental memory and brain activity in the extrastriate body area for salient versus non-salient images of bodies. Older adults showed no such advantage in selective processing under arousal. These age differences could not be attributed to changes in the arousal response or less neural distinctiveness in old age. Rather, our results suggest that, relative to young adults, older adults become less effective at focusing on salient over non-salient details during increases in emotional arousal.


2021 ◽  
Author(s):  
Alessandro Tomassini ◽  
Frank Hubert Hezemans ◽  
Rong Ye ◽  
Kamen Tsvetanov ◽  
Noham Wolpe ◽  
...  

Response inhibition is a core executive function enabling adaptive behaviour in dynamic environments. Human and animal models indicate that inhibitory control and control networks are modulated by noradrenaline, arising from the locus coeruleus. The integrity (i.e., cellular density) of the locus coeruleus noradrenergic system can be estimated from magnetization transfer sensitive magnetic resonance imaging, in view of neuromelanin present in noradrenergic neurons of older adults. Noradrenergic psychopharmacological studies indicate noradrenergic modulation of prefrontal and frontostriatal stopping-circuits in association with behavioural change. Here we test the noradrenergic hypothesis of inhibitory control, in healthy adults. We predicted that locus coeruleus integrity is associated with age-adjusted variance in response inhibition, mediated by changes in connectivity between frontal inhibitory control regions. In a preregistered analysis, we used magnetization transfer MRI images from N=63 healthy adults aged above 50 years who performed a stop-signal task, with atlas-based measurement of locus coeruleus contrast. We confirm that better response inhibition is correlated with locus coeruleus integrity and stronger connectivity between pre-supplementary motor area and right inferior frontal gyrus, but not volumes of the cortical regions. We confirmed a significant role of prefrontal connectivity in mediating the effect of individual differences in the locus coeruleus on behaviour, whereby this effect was moderated by age, over and above adjustment for the mean effects of age. Our results support the hypothesis that in normal populations, as in clinical settings, the locus coeruleus noradrenergic system regulates inhibitory control.


2021 ◽  
Author(s):  
Oliver Sturman ◽  
Lukas Matthias von Ziegler ◽  
Mattia Privitera ◽  
Rebecca Waag ◽  
Sian Nina Duss ◽  
...  

Chronic stress exposure in adolescence can lead to a lasting change in stress responsiveness later in life and is associated with increased mental health issues in adulthood. Here we investigate whether the Chronic Social Instability (CSI) paradigm in mice influences the behavioural and molecular responses to novel acute stressors, and whether it alters physiological responses influenced by the noradrenergic system. Using large cohorts of mice, we show that CSI mice display a persistent increase in exploratory behaviors in the open field test alongside small but widespread transcriptional changes in the ventral hippocampus. However, both the transcriptomic and behavioural responses to novel acute stressors are indistinguishable between groups. In addition, the pupillometric response to a tail shock, known to be mediated by the noradrenergic system, remains unaltered in CSI mice. Ultra-high performance liquid chromatography analysis of monoaminergic neurotransmitter levels in the ventral hippocampus also shows no differences between control or CSI mice at baseline or in response to acute stress. We conclude that CSI exposure during adolescence leads to persistent changes in exploratory behavior and gene expression in the hippocampus, but it does not alter the response to acute stress challenges in adulthood and is unlikely to alter the function of the noradrenergic system.


Sign in / Sign up

Export Citation Format

Share Document