scholarly journals Quantifying Variation in Bacterial Reproductive Fitness: a High-Throughput Method

mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Pascal M. Frey ◽  
Julian Baer ◽  
Judith Bergada-Pijuan ◽  
Conor Lawless ◽  
Philipp K. Bühler ◽  
...  

Reproductive fitness of bacteria is a major factor in the evolution and persistence of antimicrobial resistance and may play an important role as a pathogen factor in severe infections. With a computational approach to quantify fitness in bacteria growing competitively on agar plates, our high-throughput method has been designed to obtain additional phenotypic data for antimicrobial resistance analysis at a low cost.

2020 ◽  
Author(s):  
Pascal M. Frey ◽  
Julian Baer ◽  
Judith Bergadà Pijuan ◽  
Conor Lawless ◽  
Philipp K. Bühler ◽  
...  

ABSTRACTBackgroundTo evaluate changes in reproductive fitness of bacteria, e.g., after acquisition of antimicrobial resistance, a low-cost high-throughput method to analyse bacterial growth on agar is desirable for broad usability, including in low-resource settings.MethodIn our bacterial quantitative fitness analysis (baQFA), cultures are spotted in a predefined array on agar plates and photographed sequentially while growing. These time-lapse images are analysed using a purpose-built open source software to derive normalised image intensity values for each culture spot. Subsequently, a Gompertz growth model is fitted to these optical intensity values of each culture spot and fitness is calculated from parameters of the model. For image segmentation validation, we investigated the association between normalised intensity values and colony-forming unit (CFU) counts. To represent a range of clinically important pathogenic bacteria, we used different strains of Enterococcus faecium, Escherichia coli and Staphylococcus aureus, with and without antimicrobial resistance. Relative competitive fitness (RCF) was defined as the mean fitness ratio of two strains growing competitively on one plate.ResultsbaQFA permitted the accurate construction of growth curves from bacteria grown on semisolid agar plates and fitting of Gompertz models: Normalised image intensity values showed a strong association with the total CFU/ml count per spotted culture (p<0.001) for all strains of the three species. Bacterial QFA showed relevant reproductive fitness differences between individual strains, suggesting substantial higher fitness of methicillin-resistant S. aureus JE2 than Cowan (RCF 1.60, p<0.001). Similarly, the vancomycin-resistant E. faecium ST172b showed higher competitive fitness than susceptible E. faecium ST172 (RCF 1.72, p<0.001).ConclusionOur baQFA adaptation allows detection of fitness differences between our bacterial strains, and is likely to be applicable to other bacteria. In the future, baQFA may help to estimate epidemiological antimicrobial persistence or contribute to the prediction of clinical outcomes in severe infections at a low cost.


2018 ◽  
pp. g3.200760.2018 ◽  
Author(s):  
Renaud Rincent ◽  
Jean-Paul Charpentier ◽  
Patricia Faivre-Rampant ◽  
Etienne Paux ◽  
Jacques Le Gouis ◽  
...  

Author(s):  
Prateek Gupta ◽  
Hymavathi Salava ◽  
Yellamaraju Sreelakshmi ◽  
Rameshwar Sharma

2020 ◽  
Vol 75 (10) ◽  
pp. 2817-2825
Author(s):  
Yamei Li ◽  
Leshan Xiu ◽  
Jingwei Liu ◽  
Chi Zhang ◽  
Feng Wang ◽  
...  

Abstract Background Complicated mechanisms and variable determinants related to drug resistance pose a major challenge to obtain comprehensive antimicrobial resistance (AMR) profiles of Neisseria gonorrhoeae. Meanwhile, cephalosporin-resistant mosaic penA alleles have been reported worldwide. Therefore, it is urgent to monitor the expansion of cephalosporin-resistant mosaic penA alleles. Objectives To develop a comprehensive high-throughput method to efficiently screen AMR determinants. Methods We developed a method based on multiplex PCR with MALDI-TOF MS, which can simultaneously screen for 24 mutations associated with multiple antimicrobial agents in 19 gonococcal AMR loci (NG-AMR-MS). The performance of the NG-AMR-MS method was assessed by testing 454 N. gonorrhoeae isolates with known MICs of six antibiotics, eight non-gonococcal Neisseria strains, 214 clinical samples and three plasmids with a confirmed mosaic penA allele. Results The results show that NG-AMR-MS had a specificity of 100% with a sensitivity as low as 10 copies per reaction (except for PorB A121D/N/G, 100 copies per reaction). For clinical samples with gonococcal load &gt;5 copies/μL, the method can accurately identify 20 AMR mutations. In addition, the method successfully detected specific cephalosporin-resistant strains with the A311V mutation in the penA allele. Conclusions Our high-throughput method can provide comprehensive AMR profiles within a multiplex format. Furthermore, the method can be directly applied to screening for AMR among clinical samples, serving as an effective tool for overall monitoring of N. gonorrhoeae AMR and also provides a powerful means to comprehensively improve the level of monitoring.


Planta Medica ◽  
2016 ◽  
Vol 82 (05) ◽  
Author(s):  
C Avonto ◽  
AG Chittiboyina ◽  
D Rua ◽  
IA Khan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Medelin Ocejo ◽  
Beatriz Oporto ◽  
José Luis Lavín ◽  
Ana Hurtado

AbstractCampylobacter, a leading cause of gastroenteritis in humans, asymptomatically colonises the intestinal tract of a wide range of animals.Although antimicrobial treatment is restricted to severe cases, the increase of antimicrobial resistance (AMR) is a concern. Considering the significant contribution of ruminants as reservoirs of resistant Campylobacter, Illumina whole-genome sequencing was used to characterise the mechanisms of AMR in Campylobacter jejuni and Campylobacter coli recovered from beef cattle, dairy cattle, and sheep in northern Spain. Genome analysis showed extensive genetic diversity that clearly separated both species. Resistance genotypes were identified by screening assembled sequences with BLASTn and ABRicate, and additional sequence alignments were performed to search for frameshift mutations and gene modifications. A high correlation was observed between phenotypic resistance to a given antimicrobial and the presence of the corresponding known resistance genes. Detailed sequence analysis allowed us to detect the recently described mosaic tet(O/M/O) gene in one C. coli, describe possible new alleles of blaOXA-61-like genes, and decipher the genetic context of aminoglycoside resistance genes, as well as the plasmid/chromosomal location of the different AMR genes and their implication for resistance spread. Updated resistance gene databases and detailed analysis of the matched open reading frames are needed to avoid errors when using WGS-based analysis pipelines for AMR detection in the absence of phenotypic data.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1313
Author(s):  
Andreas Hoffmann ◽  
Alexander J. C. Kuehne

Carbon nanofiber nonwovens are promising materials for electrode or filtration applications; however, their utilization is obviated by a lack of high throughput production methods. In this study, we utilize a highly effective high-throughput method for the fabrication of polyacrylonitrile (PAN) nanofibers as a nonwoven on a dedicated substrate. The method employs rotational-, air pressure- and electrostatic forces to produce fibers from the inner edge of a rotating bell towards a flat collector. We investigate the impact of all above-mentioned forces on the fiber diameter, morphology, and bundling of the carbon-precursor PAN fibers. The interplay of radial forces with collector-facing forces has an influence on the uniformity of fiber deposition. Finally, the obtained PAN nanofibers are converted to carbon nonwovens by thermal treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Woo Seok Kim ◽  
Sungcheol Hong ◽  
Milenka Gamero ◽  
Vivekanand Jeevakumar ◽  
Clay M. Smithhart ◽  
...  

AbstractThe vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions.


Sign in / Sign up

Export Citation Format

Share Document