scholarly journals Mid-Cenozoic succession on the northeast limb of the Mount Diablo anticline, California—A stratigraphic record of tectonic events in the forearc basin

2021 ◽  
Author(s):  
Raymond Sullivan ◽  
Morgan D. Sullivan ◽  
Stephen W. Edwards ◽  
Andrei M. Sarna-Wojcicki ◽  
Rebecca A. Hackworth ◽  
...  

ABSTRACT The mid-Cenozoic succession in the northeast limb of the Mount Diablo anticline records the evolution of plate interactions at the leading edge of the North America plate. Subduction of the Kula plate and later Farallon plate beneath the North America plate created a marine forearc basin that existed from late Mesozoic to mid-Cenozoic times. In the early Cenozoic, extension on north-south faults formed a graben depocenter on the west side of the basin. Deposition of the Markley Formation of middle to late? Eocene age took place in the late stages of the marine forearc basin. In the Oligocene, the marine forearc basin changed to a primarily nonmarine basin, and the depocenter of the basin shifted eastward of the Midland fault to a south-central location for the remainder of the Cenozoic. The causes of these changes may have included slowing in the rate of subduction, resulting in slowing subsidence, and they might also have been related to the initiation of transform motion far to the south. Two unconformities in the mid-Cenozoic succession record the changing events on the plate boundary. The first hiatus is between the Markley Formation and the overlying Kirker Formation of Oligocene age. The succession above the unconformity records the widespread appearance of nonmarine rocks and the first abundant appearance of silicic volcanic detritus due to slab rollback, which reversed the northeastward migration of the volcanic arc to a more proximal location. A second regional unconformity separates the Kirker/Valley Springs formations from the overlying Cierbo/Mehrten formations of late Miocene age. This late Miocene unconformity may reflect readjustment of stresses in the North America plate that occurred when subduction was replaced by transform motion at the plate boundary. The Cierbo and Neroly formations above the unconformity contain abundant andesitic detritus due to proto-Cascade volcanism. In the late Cenozoic, the northward-migrating triple junction produced volcanic eruptive centers in the Coast Ranges. Tephra from these local sources produced time markers in the late Cenozoic succession.

1997 ◽  
Vol 102 (B5) ◽  
pp. 10055-10082 ◽  
Author(s):  
Mark B. Gordon ◽  
Paul Mann ◽  
Dámaso Cáceres ◽  
Raúl Flores

2007 ◽  
Vol 3 (6) ◽  
pp. 709-711 ◽  
Author(s):  
Nicholas D Pyenson ◽  
David M Haasl

Whale-fall communities support a deep-sea invertebrate assemblage that subsists entirely on the decaying carcasses of large cetaceans. The oldest whale-falls are Late Eocene in age, but these early whale-falls differ in faunal content and host cetacean size from Neogene and Recent whale-falls. Vesicomyid bivalves, for example, are major components of the sulphophilic stage in Miocene and Recent whale-fall communities, but they are absent from Palaeogene fossil whale-falls. The differences between Palaeogene and Neogene communities led to the hypothesis that the origin of modern whale-fall communities was linked with the evolution of extremely large mysticetes, which provided sufficient biomass and oil to sustain the modern complement of whale-fall invertebrates. Here, we describe a fossil whale-fall community from the Miocene of California, showing vesicomyid bivalves in direct association with a host mysticete smaller than the adult individuals of any living mysticete species. This association, which is the youngest yet reported from the Neogene of North America, demonstrates that body size is not a necessary factor for the formation of modern whale-fall communities. Instead, we suggest that high skeletal oil content may have been a more important factor, which, based on the age of the fossil whale-fall, evolved at least by the Late Miocene.


Geology ◽  
2021 ◽  
Vol 49 (5) ◽  
pp. 602-606 ◽  
Author(s):  
Richard O. Lease ◽  
Peter J. Haeussler ◽  
Robert C. Witter ◽  
Daniel F. Stockli ◽  
Adrian M. Bender ◽  
...  

Abstract The Fairweather fault (southeastern Alaska, USA) is Earth’s fastest-slipping intracontinental strike-slip fault, but its long-term role in localizing Yakutat–(Pacific–)North America plate motion is poorly constrained. This plate boundary fault transitions northward from pure strike slip to transpression where it comes onshore and undergoes a <25°, 30-km-long restraining double bend. To the east, apatite (U-Th)/He (AHe) ages indicate that North America exhumation rates increase stepwise from ∼0.7 to 1.7 km/m.y. across the bend. In contrast, to the west, AHe age-depth data indicate that extremely rapid 5–10 km/m.y. Yakutat exhumation rates are localized within the bend. Further northwest, Yakutat AHe and zircon (U-Th)/He (ZHe) ages gradually increase from 0.3 to 2.6 Ma over 150 km and depict an interval of extremely rapid >6–8 km/m.y. exhumation rates that increases in age away from the bend. We interpret this migration of rapid, transient exhumation to reflect prolonged advection of the Cenozoic–Cretaceous sedimentary cover of the eastern Yakutat microplate through a stationary restraining bend along the edge of the North America plate. Yakutat cooling ages imply a long-term strike-slip rate (54 ± 6 km/m.y.) that mimics the millennial (53 ± 5 m/k.y.) and decadal (46 mm/yr) rates. Fairweather fault slip can account for all Pacific–North America relative plate motion throughout Quaternary time and indicates stability of highly localized plate boundary strike slip on a single fault where extreme rock uplift rates are persistently localized within a restraining bend.


Author(s):  
Susan Elizabeth Hough ◽  
Roger G. Bilham

The Caribbean is a place of romance. Idyllic beaches, buoyant cultures, lush tropical flora; even the Caribbean pirates of yore often find themselves romanticized in modern eyes, and on modern movie screens. Yet it requires barely a moment’s reflection to appreciate the enormous resilience that must exist in a place that is so routinely battered by storms of enormous ferocity. News stories tend to focus on large storms that reach the United States, but many large hurricanes arrive in the United States by way of the Caribbean. Before it slammed into South Carolina in 1989, Hurricane Hugo brushed the Caribbean islands, skimming Puerto Rico and devastating many small islands to its east. Other hurricanes have hit the islands more directly. These include Inez, which claimed some 1,500 lives in 1966, and the powerful Luis, which caused $2.5 billion in property damage and 17 deaths when it pummeled the Leeward Islands and parts of Puerto Rico and the Virgin Islands in 1995. Hurricanes also figure prominently in the pre-20th-century history of the Caribbean—storms that had no names, the sometimes lethal fury of which arrived unheralded by modern forecasts. Most people know that the Caribbean is hurricane country; probably few realize that it is earthquake country as well. After all, the western edge of North America is the active plate boundary; earthquakes occur in the more staid midcontinent and Atlantic seaboard, but far less commonly. What can be overlooked, however, is North America’s other active plate boundary. To understand the general framework of this other boundary, it is useful to return briefly to basic tenets of plate tectonics theory. As discussed in earlier chapters, the eastern edge of North America is known as a passive margin. Because the North American continent is not moving relative to the adjacent Atlantic oceanic crust, in plate tectonics terms, scientists do not differentiate between the North American continent and the western half of the Atlantic ocean.


Sign in / Sign up

Export Citation Format

Share Document