THREE-DIMENSIONAL HYDROGEOLOGIC FRAMEWORK MODEL OF THE RIO RICO AND NOGALES 7.5' QUADRANGLES, UPPER SANTA CRUZ BASIN, SOUTHERN ARIZONA

2016 ◽  
Author(s):  
William R. Page ◽  
◽  
Mark Bultman ◽  
Floyd Gray ◽  
Christopher Menges ◽  
...  
2016 ◽  
Author(s):  
Geoffrey Cromwell ◽  
◽  
Greg Mendez ◽  
Claudia C. Faunt

Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 147
Author(s):  
Mariana Villegas ◽  
Catherine Soos ◽  
Gustavo Jiménez-Uzcátegui ◽  
Shukri Matan ◽  
Keith A. Hobson

Darwin’s finches are a classic example of adaptive radiation involving differential use of dietary resources among sympatric species. Here, we apply stable isotope (δ13C, δ15N, and δ2H) analyses of feathers to examine ecological segregation among eight Darwin’s finch species in Santa Cruz Island, Galápagos collected from live birds and museum specimens (1962–2019). We found that δ13C values were higher for the granivorous and herbivorous foraging guilds, and lower for the insectivorous finches. Values of δ15N were similar among foraging guilds but values of δ2H were higher for insectivores, followed by granivores, and lowest for herbivores. The herbivorous guild generally occupied the largest isotopic standard ellipse areas for all isotopic combinations and the insectivorous guild the smallest. Values of δ2H provided better trophic discrimination than those of δ15N possibly due to confounding influences of agricultural inputs of nitrogen. Segregation among guilds was enhanced by portraying guilds in three-dimensional isotope (δ13C, δ15N, and δ2H) space. Values of δ13C and δ15N were higher for feathers of museum specimens than for live birds. We provide evidence that Darwin’s finches on Santa Cruz Island tend to be generalists with overlapping isotopic niches and suggest that dietary overlap may also be more considerable than previously thought.


Author(s):  
Cecile Meier ◽  
Jose Luis Saorín ◽  
Alejandro Bonnet de León ◽  
Alberto Guerrero Cobos

This paper describes an experience to incorporate the realization of virtual routes about the sculptural heritage of a city in the classroom by developing a simulation of the urban environment using a video game engine. Video game engines not only allow the creation of video games but also the creation and navigation of in-teractive three-dimensional worlds. For this research, Roblox Studio has been used, a simple and intuitive program in which no previous programming skills are required. During the 2018/2019 academic year, a pilot experience was carried out with 53 secondary school students who were given the task of designing a virtual environment in which they had to include 3D models of the sculptural her-itage of the city of Santa Cruz de Tenerife. Before starting the experience, the par-ticipants answered a questionnaire to obtain a previous idea of the students' knowledge about the creation of video games. Once the activity was finished and in order to evaluate the result of the activity, the participants answered a final questionnaire. The students emphasized that after the activity they are more aware of the sculptural heritage of Santa Cruz and that they consider themselves capable of creating their own interactive worlds with Roblox.


Sign in / Sign up

Export Citation Format

Share Document