ASSESSMENT OF THE SPATIO-TEMPORAL VARIATIONS IN GROUND WATER STORAGE USING DOWN-SCALED GRACE DATA

2018 ◽  
Author(s):  
Hossein Sahour ◽  
◽  
Mohamed Sultan ◽  
Karem Abdelmohsen ◽  
Sita Karki ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bramha Dutt Vishwakarma ◽  
Jinwei Zhang ◽  
Nico Sneeuw

AbstractThe Gravity Recovery And Climate Experiment (GRACE) satellite mission recorded temporal variations in the Earth’s gravity field, which are then converted to Total Water Storage Change (TWSC) fields representing an anomaly in the water mass stored in all three physical states, on and below the surface of the Earth. GRACE provided a first global observational record of water mass redistribution at spatial scales greater than 63000 km2. This limits their usability in regional hydrological applications. In this study, we implement a statistical downscaling approach that assimilates 0.5° × 0.5° water storage fields from the WaterGAP hydrology model (WGHM), precipitation fields from 3 models, evapotranspiration and runoff from 2 models, with GRACE data to obtain TWSC at a 0.5° × 0.5° grid. The downscaled product exploits dominant common statistical modes between all the hydrological datasets to improve the spatial resolution of GRACE. We also provide open access to scripts that researchers can use to produce downscaled TWSC fields with input observations and models of their own choice.


Author(s):  
Dheeraj Kumar P. K. Singh ◽  
Jitandar Kumar K. K. Yadav ◽  
B. L. Tailor

The present study was conducted to study heavy metal pollution in ground water of southern part of Upper Berach river. The water samples for the heavy metal analysis were collected from the open well of the 38 locations from Upper Berach river to find out concentration of different heavy metal such as Iron (Fe), Manganese (Mn), Copper (Cu), Zinc (Zn), Cadmium (Cd), Lead (Pb) and Nickel (Ni). The different heavy metals thematic maps of study area were prepared under GIS environment and the spatio-temporal variations of these parameters were analyzed. Results of the study indicates that about 57.94 per cent area shows Fe within BIS acceptable limit (< 0.3 mg/lit) and 42.06 per cent area show exceed Fe above acceptable limit of drinking purpose. About 42.03 per cent area shows Mn within BIS acceptable limit (< 0.1 mg/lit) and 57.97 per cent area shows Mn above permissible limit of drinking purpose.


2021 ◽  
pp. 53
Author(s):  
Cecilia Cornero ◽  
Aylen Pereira ◽  
Ana C. O. C. Matos ◽  
M. Cristina Pacino ◽  
Denizar Blitzkow

<p>GRACE (Gravity Recovery and Climate Experiment) is a satellite mission that can monitor mass distributions in the Earth system, which is closely related to the consequences of climate change. This gravimetric satellite allows to obtain monthly variations of the Earth’s gravity field, which can be associated with water mass variations, after removing the effects of oceanic tides and solid Earth, as well as non-tidal oceanic and atmospheric contributions. In this work, data from GRACE (2002-2017) and GRACE FO (since 2018) were used to analyze the variation of the water mass in the Middle and Low Paraná river basin. The interpretation of the results was carried out by associating the mass anomalies derived from GRACE data with information from the TRMM global rainfall mission. Monthly maps of GRACE water mass variations and TRMM precipitation were produced, which made possible a thorough analysis at a regional level of this mass redistribution in the basin, and its connection to the El Niño and La Niña events that took place in the period under study. The water deficits shown in the 2009 GRACE maps are, in fact, related to the intense episode of La Niña that occurred in the period 2008-2009; while the excess of water storage depicted on the 2016 and 2019 maps is connected to the El Niño phenomenon. Moreover, GRACE has also detected drought events in different sectors between 2011-2012, together with floods in the years 2007 and 2010. Monthly GRACE-derived water storage changes were compared with the independent components of the water balance in the region using different hydrological models estimates. Finally, the temporal variations of the groundwater and the soil part (surface water, soil moisture) were analyzed using the Global Land Data Assimilation System GLDAS. The variables showed a good correlation between them, reaching values of <span> ~</span>r = 0.80.</p>


2020 ◽  
Author(s):  
Yu Zhu ◽  
Shiyin Liu ◽  
Ying Yi ◽  
Miaomiao Qi ◽  
Wanqiu Li ◽  
...  

Abstract The nature of the heterogeneity of terrestrial water storage (TWS) in the Eastern Qinghai-Tibet Plateau (EQTP) is poorly understood because of the lack of validated datasets and the complex topographical conditions. In this study, monthly GRACE Level 2 Release 6 (RL06) products were employed to characterize TWS changes between April 2002 and August 2016 in the EQTP. Based on the observations and hydrological model output, the dominant factors contributing to the changes in TWS in sub-basins, and areas of TWS decrease and increase were analyzed systematically. We concluded that the TWS in the EQTP showed a slight decreasing trend from 2002 to 2016 with obvious spatial heterogeneity. The decrease in TWS may be attributed to the increase in evapotranspiration, which explains approximately 59% of the variations. In the region where a substantial decrease in TWS was observed, the trend primarily depended on evapotranspiration, and was certainly affected by glacial ablation. Moreover, the expansion of lakes supplemented by glaciers was the main cause of TWS change in the areas where TWS increased. A decrease in TWS mainly occurred in summer and was mainly due to the increase in evapotranspiration because of warming, an increase in wind speed, and a decrease in relative humidity.


2019 ◽  
Vol 219 (3) ◽  
pp. 2034-2055
Author(s):  
Paoline Prevost ◽  
Kristel Chanard ◽  
Luce Fleitout ◽  
Eric Calais ◽  
Damian Walwer ◽  
...  

SUMMARY Measurements of the spatio-temporal variations of Earth’s gravity field from the Gravity Recovery and Climate Experiment (GRACE) mission have led to new insights into large spatial mass redistribution at secular, seasonal and subseasonal timescales. GRACE solutions from various processing centres, while adopting different processing strategies, result in rather coherent estimates. However, these solutions also exhibit random as well as systematic errors, with specific spatial patterns in the latter. In order to dampen the noise and enhance the geophysical signals in the GRACE data, we propose an approach based on a data-driven spatio-temporal filter, namely the Multichannel Singular Spectrum Analysis (M-SSA). M-SSA is a data-adaptive, multivariate, and non-parametric method that simultaneously exploits the spatial and temporal correlations of geophysical fields to extract common modes of variability. We perform an M-SSA analysis on 13 yr of GRACE spherical harmonics solutions from five different processing centres in a simultaneous setup. We show that the method allows us to extract common modes of variability between solutions, while removing solution-specific spatio-temporal errors that arise from the processing strategies. In particular, the method efficiently filters out the spurious north–south stripes, which are caused in all likelihood by aliasing, due to the imperfect geophysical correction models and low-frequency noise in measurements. Comparison of the M-SSA GRACE solution with mass concentration (mascons) solutions shows that, while the former remains noisier, it does retrieve geophysical signals masked by the mascons regularization procedure.


2012 ◽  
Vol 20 (3) ◽  
pp. 356-362 ◽  
Author(s):  
Xiao-Lin YANG ◽  
Zhen-Wei SONG ◽  
Hong WANG ◽  
Quan-Hong SHI ◽  
Fu CHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document