scholarly journals Downscaling GRACE total water storage change using partial least squares regression

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bramha Dutt Vishwakarma ◽  
Jinwei Zhang ◽  
Nico Sneeuw

AbstractThe Gravity Recovery And Climate Experiment (GRACE) satellite mission recorded temporal variations in the Earth’s gravity field, which are then converted to Total Water Storage Change (TWSC) fields representing an anomaly in the water mass stored in all three physical states, on and below the surface of the Earth. GRACE provided a first global observational record of water mass redistribution at spatial scales greater than 63000 km2. This limits their usability in regional hydrological applications. In this study, we implement a statistical downscaling approach that assimilates 0.5° × 0.5° water storage fields from the WaterGAP hydrology model (WGHM), precipitation fields from 3 models, evapotranspiration and runoff from 2 models, with GRACE data to obtain TWSC at a 0.5° × 0.5° grid. The downscaled product exploits dominant common statistical modes between all the hydrological datasets to improve the spatial resolution of GRACE. We also provide open access to scripts that researchers can use to produce downscaled TWSC fields with input observations and models of their own choice.

2021 ◽  
pp. 53
Author(s):  
Cecilia Cornero ◽  
Aylen Pereira ◽  
Ana C. O. C. Matos ◽  
M. Cristina Pacino ◽  
Denizar Blitzkow

<p>GRACE (Gravity Recovery and Climate Experiment) is a satellite mission that can monitor mass distributions in the Earth system, which is closely related to the consequences of climate change. This gravimetric satellite allows to obtain monthly variations of the Earth’s gravity field, which can be associated with water mass variations, after removing the effects of oceanic tides and solid Earth, as well as non-tidal oceanic and atmospheric contributions. In this work, data from GRACE (2002-2017) and GRACE FO (since 2018) were used to analyze the variation of the water mass in the Middle and Low Paraná river basin. The interpretation of the results was carried out by associating the mass anomalies derived from GRACE data with information from the TRMM global rainfall mission. Monthly maps of GRACE water mass variations and TRMM precipitation were produced, which made possible a thorough analysis at a regional level of this mass redistribution in the basin, and its connection to the El Niño and La Niña events that took place in the period under study. The water deficits shown in the 2009 GRACE maps are, in fact, related to the intense episode of La Niña that occurred in the period 2008-2009; while the excess of water storage depicted on the 2016 and 2019 maps is connected to the El Niño phenomenon. Moreover, GRACE has also detected drought events in different sectors between 2011-2012, together with floods in the years 2007 and 2010. Monthly GRACE-derived water storage changes were compared with the independent components of the water balance in the region using different hydrological models estimates. Finally, the temporal variations of the groundwater and the soil part (surface water, soil moisture) were analyzed using the Global Land Data Assimilation System GLDAS. The variables showed a good correlation between them, reaching values of <span> ~</span>r = 0.80.</p>


2019 ◽  
Vol 9 (1) ◽  
pp. 133-143
Author(s):  
Ayelen Pereira ◽  
Cecilia Cornero ◽  
Ana C. O. C. Matos ◽  
M. Cristina Pacino ◽  
Denizar Blitzkow

Abstract The continental water storage is significantly in-fluenced by wetlands, which are highly affected by climate change and anthropogenic influences. The Pantanal, located in the Paraguay river basin, is one of the world’s largest and most important wetlands because of the environmental biodiversity that represents. The satellite gravity mission GRACE (Gravity Recovery And Climate Experiment) provided until 2017 time-variable Earth’s gravity field models that reflected the variations due to mass transport processes-like continental water storage changes-which allowed to study environments such as wetlands, at large spatial scales. The water storage variations for the period 2002-2016, by using monthly land water mass grids of Total Water Storage (TWS) derived from GRACE solutions, were evaluated in the Pantanal area. The capability of the GRACE mission for monitoring this particular environment is analyzed, and the comparison of the water mass changes with rainfall and hydrometric heights data at different stations distributed over the Pantanal region was carried out. Additionally, the correlation between the TWS and river gauge measurements, and the phase differences for these variables, were also evaluated. Results show two distinct zones: high correlations and low phase shifts at the north, and smaller correlation values and consequently significant phase differences towards the south. This situation is mainly related to the hydrogeological domains of the area.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Min Xu ◽  
Shichang Kang ◽  
Jiazhen Li

The Gravity Recovery and Climate Experiment (GRACE) satellite mission provides measurements of Earth’s static and time-variable gravity fields with monthly resolution. In this study, changes of water storage in northwestern China were determined by GRACE monthly gravity field data obtained from 2003 to 2010. Comparisons of water storage change (WSC) simulated by a four-dimensional assimilation model (Noah) and observed by GRACE revealed similar patterns of change and a correlation coefficient of 0.71(P<0.05). Trend analysis indicated significant changes in the spatiotemporal variation of WSC in northwestern China during the 8-year study period, which were stronger in the east than in the west and more pronounced in the south than in the north. The most pronounced increase in water storage occurred in Gansu and Qinghai provinces, but, overall, water storage increased by 0.61 mm/a over northwestern China during the study period. Clear seasonal variations of WSC and precipitation were found, because glacial meltwater and precipitation are the main sources of water in the hydrosphere; meanwhile, the distributions of glaciers and permafrost also affect the spatial distribution of WSC.


2020 ◽  
Vol 8 ◽  
Author(s):  
Bramha Dutt Vishwakarma

With ongoing climate change, we are staring at possibly longer and more severe droughts in the future. Therefore, monitoring and understanding duration and intensity of droughts, and how are they evolving in space and time is imperative for global socio-economic security. Satellite remote sensing has helped us a lot in this endeavor, but most of the satellite missions observe only near-surface properties of the Earth. A recent geodetic satellite mission, GRACE, measured the water storage change both on and beneath the surface, which makes it unique and valuable for drought research. This novel dataset comes with unique problems and characteristics that we should acknowledge before using it. In this perspective article, I elucidate important characteristics of various available GRACE products that are important for drought research. I also discuss limitations of GRACE mission that one should be aware of, and finally I shed some light on latest developments in GRACE data processing that may open numerous possibilities in near future.


2010 ◽  
Vol 11 (1) ◽  
pp. 156-170 ◽  
Author(s):  
Qiuhong Tang ◽  
Huilin Gao ◽  
Pat Yeh ◽  
Taikan Oki ◽  
Fengge Su ◽  
...  

Abstract Terrestrial water storage (TWS) is a fundamental component of the water cycle. On a regional scale, measurements of terrestrial water storage change (TWSC) are extremely scarce at any time scale. This study investigates the feasibility of estimating monthly-to-seasonal variations of regional TWSC from modeling and a combination of satellite and in situ surface observations based on water balance computations that use ground-based precipitation observations in both cases. The study area is the Klamath and Sacramento River drainage basins in the western United States (total area of about 110 000 km2). The TWSC from the satellite/surface observation–based estimates is compared with model results and land water storage from the Gravity Recovery and Climate Experiment (GRACE) data. The results show that long-term evapotranspiration estimates and runoff measurements generally balance with observed precipitation, suggesting that the evapotranspiration estimates have relatively small bias for long averaging times. Observations show that storage change in water management reservoirs is about 12% of the seasonal amplitude of the TWSC cycle, but it can be up to 30% at the subbasin scale. Comparing with predevelopment conditions, the satellite/surface observation–based estimates show larger evapotranspiration and smaller runoff than do modeling estimates, suggesting extensive anthropogenic alteration of TWSC in the study area. Comparison of satellite/surface observation–based and GRACE TWSC shows that the seasonal cycle of terrestrial water storage is substantially underestimated by GRACE.


2018 ◽  
Vol 35 (4) ◽  
pp. 307
Author(s):  
Cecilia Cornero ◽  
AYELEN PEREIRA ◽  
MARÍA CRISTINA PACINO

ABSTRACT. The natural heritage of biodiversity of the Paraguay river basin is subject to potential impacts due to climate change. To monitor these environments at large spatial scales, the satellite gravity mission GRACE (Gravity Recovery and Climate Experiment) provides time-variable Earth’s gravity field models that reflect the variations due to mass transport processes, like continental water storage changes. The purpose of this work is to analyze the spatial and temporal water storage changes for period 2003-2014 using the Equivalent Water Height (EWH) derived from the GRACE solutions in the Pantanal region, one of the most biologically rich environments of the planet. The comparison with EWH and river gauge data at different stations distributed over the Pantanal area was carried out. In order to validate the satellite results, the correlation analysis between the water mass changes and river gauge measurements was obtained, and also the phase differences were analyzed. High correlations were detected at the north, and lower ones towards the south of the Pantanal. The EWH were also contrasted with soil moisture and rainfall data models. The results showed a good agreement between the signals for the area under study.Keywords: water storage, satellite gravity mission, river gauge, rainfall. RESUMO. O patrimônio natural de biodiversidade da bacia do rio Paraguai está sujeito a potenciais impactos das mudanças climáticas. Para monitorar esse ambiente em escala espacial, a missão satelital GRACE (Gravity Recovery and Climate Experiment) fornece modelos do campo de gravidade da Terra variáveis no tempo devido ao processo de transporte de massa, como as variações de armazenamento de água continentais. O objetivo deste artigo é analisar a variabilidade espacial e temporal de armazenamento de água para o período 2003-2014 através da altura equivalente d’água (EWH) derivada das soluções deGRACE na região do Pantanal, um dos ambientes biologicamente mais ricos do planeta. Comparações dos dados de EWH e alturas d’água in-situ foram feitas para diferentes estações distribuídas na região do Pantanal. Com a finalidade de validar os resultados de satélite, foi feita a análise de correlação entre as mudanças de massa d’água e as medições das réguas linimétricas fixadas nas margens dos rios. As diferenças de fase também foram analisadas. Ao Norte do Pantanal foram detectadas altas correlações entre as duas alturas (EWH versus in-situ), e baixas em direção ao sul. O EWH também foi validado com modelos de umidade do solo e precipitação. Os resultados mostraram uma boa concordância entre os sinais para a área em estudo. Palavras-chave: armazenamento de água, missão satelital, cotas do nível d’água, precipitação.


2019 ◽  
Vol 11 (9) ◽  
pp. 1103 ◽  
Author(s):  
Fang Zou ◽  
Robert Tenzer ◽  
Shuanggen Jin

The monitoring of water storage variations is essential not only for the management of water resources, but also for a better understanding of the impact of climate change on hydrological cycle, particularly in Tibet. In this study, we estimated and analyzed changes of the total water budget on the Tibetan Plateau from the Gravity Recovery And Climate Experiment (GRACE) satellite mission over 15 years prior to 2017. To suppress overall leakage effect of GRACE monthly solutions in Tibet, we applied a forward modeling technique to reconstruct hydrological signals from GRACE data. The results reveal a considerable decrease in the total water budget at an average annual rate of −6.22 ± 1.74 Gt during the period from August 2002 to December 2016. In addition to the secular trend, seasonal variations controlled mainly by annual changes in precipitation were detected, with maxima in September and minima in December. A rising temperature on the plateau is likely a principal factor causing a continuous decline of the total water budget attributed to increase melting of mountain glaciers, permafrost, and snow cover. We also demonstrate that a substantial decrease in the total water budget due to melting of mountain glaciers was partially moderated by the increasing water storage of lakes. This is evident from results of ICESat data for selected major lakes and glaciers. The ICESat results confirm a substantial retreat of mountain glaciers and an increasing trend of major lakes. An increasing volume of lakes is mainly due to an inflow of the meltwater from glaciers and precipitation. Our estimates of the total water budget on the Tibetan Plateau are affected by a hydrological signal from neighboring regions. Probably the most significant are aliasing signals due to ground water depletion in Northwest India and decreasing precipitation in the Eastern Himalayas. Nevertheless, an integral downtrend in the total water budget on the Tibetan Plateau caused by melting of glaciers prevails over the investigated period.


2020 ◽  
Author(s):  
Fupeng Li ◽  
Zhengtao Wang ◽  
Nengfang Chao ◽  
Wei Liang ◽  
Kunjun Tian ◽  
...  

&lt;p&gt;&lt;span&gt;The Gravity Recovery and Climate Experiment (GRACE) mission, since 2002, has measured total water storage change (TWSC) and interpreted drought patterns in an unparalleled way. Nevertheless, there are still few sources could be used to understand drought patterns prior to the GRACE era. Here we derived multi-decadal climate-driven TWSC grids and used them to interpret drought patterns (1993-2019) over the Amazon basin. The correlations of climate-driven TWSC as compared to GRACE, GRACE Follow-on, and Swarm TWSC are 0.95, 0.92, and 0.77 in Amazon at grid scale (0.5&amp;#176; resolution). The drought patterns assessed by the climate-driven TWSC are consistent to those interpreted by the Palmer Drought Severity Index and GRACE TWSC. We also found that the 1998 and 2016 drought events in Amazon, both induced by the strong El Ni&amp;#241;o events, show similar drought patterns. This study provides a new perspective for interpreting long-term drought patterns prior to the GRACE period.&lt;/span&gt;&lt;/p&gt;


Author(s):  
Natalia L. Frolova ◽  
◽  
Vadim Yu. Grigorev ◽  
Inna N. Krylenko ◽  
Elena A. Zakharova ◽  
...  

The paper presents main results of GRACE mission using in such fields of study as estimations of components of basins water storage and water balance, hydrological modeling. It is shown that error of GRACE data is of the order 11 mm for watersheds with area about 100 000 km2 and decreasing with increasing of basin area. This accuracy made it possible to identify long-term and seasonal water storage. It is shown, that decreasing of total water storage in the Don basin for 2002–2019 is approximately equally caused by both soil moisture and groundwater changes. At the same time, minimum of groundwater was already reached in 2010, and soil moisture in 2015. Since 2016, Don basin groundwater changes a little during the winter period that is due, probably, with increase number of thaws and thinning of the freezing layer during this period. By the data of meteorological stations for the precipitation of cold period for the European Russia the value of their systematic error was estimated, it is about 20-25%. The comparison of the values of total water storage for the river basins of the north part of European part of Russia, according GRACE data and ECOMAG runoff modeling results has shown their good coincidence (NSE =0.78 0.89). In comparison with GRACE, ECOMAG shows a smaller increase in water storage during the winter and a faster decline during spring flood period. Currently, progress in the use of GRACE in hydrology is limited by low spatial-temporal resolution of data, which, within the framework of the GRACE mission itself, will not be improved in the coming years. At the same time, the principle of GRACE operation can be applied in future to various satellite constellations.


2018 ◽  
Author(s):  
Hossein Sahour ◽  
◽  
Mohamed Sultan ◽  
Karem Abdelmohsen ◽  
Sita Karki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document