GEOMORPHOMETRICAL DATING ANALYSES OF CINDER CONES WITH SATELLITE AND DRONE IMAGES

2019 ◽  
Author(s):  
Alejandro Villalobos-Aragon ◽  
◽  
Vanessa Veronica Espejel-Garcia ◽  
Aracely Lopez-Terrazas ◽  
Fabricio Madrigal-Vasquez ◽  
...  
Keyword(s):  
2021 ◽  
Vol 83 (6) ◽  
Author(s):  
Gianmaria Tortelli ◽  
Anna Gioncada ◽  
Carolina Pagli ◽  
Mauro Rosi ◽  
Laura De Dosso ◽  
...  

AbstractDuring continental rifting, strain and magmatism are believed to localize to narrow magmatic segments, while the rift margin is progressively abandoned. We integrate volcanological, geochemical, petrological and seismic data from the Ma’Alalta volcanic field (MVF) near the western margin of Afar, to show that the MVF is an active magmatic segment. Magmatism in MVF initiated with lava flows and large-volume, caldera-forming ignimbrites from a central edifice. However, the most recent magmatic activity shifted towards mafic lava fields, cinder cones and obsidian-rich silicic domes erupted from vents aligned NNW-SSE, defining a ~ 35-km-long magmatic segment. Along the same area, a NNW-SSE alignment of earthquakes was recorded by two local seismic networks (2005–2009 and 2011–2013). The geochemistry of the mafic rocks is similar to those of nearby axial volcanoes. Inferred magma storage depth from mineral geobarometry shows that a shallow, silicic chamber existed at ~ 5-km depth below the stratovolcano, while a stacked plumbing system with at least three magma storage levels between 9 and 24 km depth fed the recent basalts. We interpret the wide set of observations from the MVF as evidence that the area is an active magmatic segment, showing that localised axial extension can be heavily offset towards the rift margin.


2006 ◽  
Vol 68 (5) ◽  
pp. 407-419 ◽  
Author(s):  
Ian S. E. Carmichael ◽  
Holli M. Frey ◽  
Rebecca A. Lange ◽  
Chris M. Hall

2010 ◽  
Vol 36 (4) ◽  
pp. 287-300 ◽  
Author(s):  
Michael Gilichinsky ◽  
Dmitry Melnikov ◽  
Ivan Melekestsev ◽  
Natasha Zaretskaya ◽  
Moshe Inbar

From the Middle Jurassic onwards persistent igneous activity in the southern Andes around 46 °S was controlled by easterly dipping subduction along the Pacific margin. Cogenetic plutonic rocks belonging to the Patagonian batholith, and calc-alkaline volcanics ranging from basaltic andesites to rhyolitic tuffs and ignimbrites are the principal products. Erosion of the primary volcanics has led at various times to the development of thick volcaniclastic sequences, for example in the Cretaceous-Lower Tertiary Divisadero formation. The Coyhaique region marks the northerly extension of a narrow back-arc basin in which the marine Neocomian successions accumulated. Volcaniclastics from the island arc, which presumably lay to the west, are intercalated with the sediments. Although the marine basin was short-lived a mildly extensional back-arc regime may have existed through much of Mesozoic-Recent times. Widespread basalt-rhyolite volcanism on the eastern side of the cordillera seems to have been associated with this tectonic environment. Remnants of the Patagonian basalt plateau at latitude 45-47 °S extend from the Argentine-Chile frontier to Lago Colhue Huapi. Four principal age and compositional groups have been distinguished in the lavas, (i) The oldest, which are about 80 Ma, occur in sections at Senguerr and Morro Negro. They are almost exclusively tholeiitic, but show some calc-alkaline affinities and resemble in other respects basalts from marginal basins, (ii) The second group (57-43 Ma) occur in the lower part of the Chile Chico section with a compositional spread from olivine tholeiites through alkali basalts to one occurrence of a basanite. (iii) The upper part of the main plateau sequence, where the flows are in the range 25-9 Ma, are dominantly of alkali basalt composition, (iv) Post-plateau flows from small cinder cones on the surface of the plateau range in age from ca. 4 Ma to 0.2 Ma or less. They are mostly highly undersaturated basanites, with occasional leucite basanites, enriched in incompatible elements. A few of the earlier tholeiites with calc-alkali traits may have been closely associated with subduction or marginal basin processes. The younger lavas are more alkalic intraplate types generated in the remote back-arc extensional zone.


2020 ◽  
Vol 175 (11) ◽  
Author(s):  
Eduardo Becerra-Torres ◽  
Elena Melekhova ◽  
Jon D. Blundy ◽  
Richard A. Brooker

Abstract Primitive subduction zone magmas provide information about the composition and thermal structure of the underlying mantle wedge. In the Colima Graben, Mexico, primitive lavas erupted from cinder cones range from high magnesium calc-alkaline basalts to high-K trachybasalts. This chemical diversity suggests that the sub-arc mantle wedge from which they derive is heterogeneous. To explore the conditions of magma generation in the wedge beneath Colima we used an inverse experimental approach to constrain multiple saturation points on the liquidus surface of a primitive high-K basanite (COM-1). Equilibrium piston-cylinder experiments were carried out between 1.0 and 2.4 GPa under hydrous (1.8–3.8 wt% H2O) and oxidizing (ƒO2 = − 0.5 to 4.3 log units relative to NNO) conditions. COM-1 + 3.8 wt% H2O is shown to be multiply-saturated with a phlogopite-bearing spinel pyroxenite assemblage (cpx + opx + phl + sp) close to its liquidus at 1.9–2.4 GPa and 1300 ºC. Experimental mapping of the liquidus surface reveals a multiple saturation point (MSP) where a lherzolitic phase assemblage of ol + cpx + opx + sp + phl coexist. The topology of the MSP indicates a peritectic of the form cpx + opx + phl + sp = liquid + ol. Four bracketing experiments define the MSP of COM-1 as 1300 ± 10 °C, 1.7 ± 0.1 GPa, ∆NNO = 3.4 ± 0.5 log units, for melt containing 3.6 ± 0.4 wt% H2O. The MSP olivine is too forsterite-rich (Fo92-94) to be in equilibrium with mantle lherzolite, but matches phenocryst core compositions in the natural basanite. Thus, experimental results indicate that COM-1 was produced by incongruent melting of an olivine-free, phlogopite-pyroxenite source that itself is the result of metasomatism of mantle wedge by slab-derived fluids. These conditions provide a valuable constraint on the thermal structure and chemical composition of the mantle wedge beneath Colima.


2015 ◽  
Vol 14 (4) ◽  
pp. 537-545 ◽  
Author(s):  
Michael Gilichinsky ◽  
Nikita Demidov ◽  
Elizaveta Rivkina

AbstractThe permanently frozen volcanic sediment is one of the most promising geological objects for searching life on Mars. On Earth, volcanic intrusions into permafrost result in formation of the unique microbial communities. We propose several terrestrial analogues of Martian polar volcanoes, such as the permanently frozen volcanic sediments on the Kamchatka peninsula and in Antarctica. The present study shows applicability of the morphometric analysis for demonstration of the morphological similarity between the terrestrial and Martian cinder cones. In the present work, the morphometric analysis of young Martian landforms is based on the assumption that the conical structures identified on digital terrain model (DTM) are volcanic cinder cones. Morphometric analysis of the studied cones showed a range of degradation. The extent of degradation may be an indicator of age based on comparison with volcanic cinder cones on Earth. A morphometric analysis of potentially young volcanic cones in the North Polar Region of Mars was performed to estimate their relative age. The 14 potential cinder cones were identified using the DTM provided by Mars Express High Resolution Stereo Camera (HRSC), allowing for the basic morphometric calculations. The majority of the cinder cones are localized in the Chasma Boreale region within the area 79°–81°N and 261°–295°E. The calculated morphometric parameters showed that the cone average steepness varied from 3.4° to 11.8°, cone height-to-width ratio varied from 0.025 to 0.12, and the ratio between surface and basal area of the cone varied from 1.005 to 1.131. The studied cinder cones were classified with respect to the morphometric ratios assuming that larger values correspond to the younger structures. Employing the terrestrial analogy of morphometric ratios as a proxy for relative geological age, we suggest that existing microorganisms may be found in permafrost of young Martian cinder cones.


Sign in / Sign up

Export Citation Format

Share Document