The Colima volcanic complex, Mexico: Part II. Late-quaternary cinder cones

1981 ◽  
Vol 76 (2) ◽  
pp. 127-147 ◽  
Author(s):  
James F. Luhr ◽  
Ian S. E. Carmichael
1980 ◽  
Vol 13 (2) ◽  
pp. 160-171 ◽  
Author(s):  
Alan N. Federman ◽  
Steven N. Carey

AbstractFive widespread tephra layers are found in late Quaternary sediments (0–130,000 yr B.P.) of the Eastern Mediterranean Sea. These layers have been correlated among abyssal cores and to their respective terrestrial sources by electron-probe microanalysis of glass and pumice shards. Major element variations are sufficient to discriminate unambiguously between the five major layers. Oxygen isotope stratigraphy in one of the cores studied was used to data four of the five layers. Two of the widespread layers are derived from explosive eruptions of the Santorini volcanic complex: the Minoan Ash (3370 yr B.P.) and the Acrotiri Ignimbrite (18,000 yr B.P.). An additional layer, found in one core only, is most likely correlated to the Middle Pumice Series of Santorini (approximately 100,000 yr B.P.). Two layers are correlated to deposits on the islands of Yali and Kos and date to 31,000 and 120,000 yr B.P., respectively. One layer originated from the Neapolitan area of Italy 38,000 yr B.P.


2002 ◽  
Vol 2 (1/2) ◽  
pp. 51-56 ◽  
Author(s):  
P. Valadão ◽  
J. L. Gaspar ◽  
G. Queiroz ◽  
T. Ferreira

Abstract. The Azores archipelago is located in the Atlantic Ocean and is composed of nine volcanic islands. S. Miguel, the largest one, is formed by three active, E-W trending, trachytic central volcanoes with caldera (Sete Cidades, Fogo and Furnas). Chains of basaltic cinder cones link those major volcanic structures. An inactive trachytic central volcano (Povoação) and an old basaltic volcanic complex (Nordeste) comprise the easternmost part of the island. Since the settlement of the island early in the 15th century, several destructive landslides triggered by catastrophic rainfall episodes, earthquakes and volcanic eruptions occurred in different areas of S. Miguel. One unique event killed thousands of people in 1522. Houses and bridges were destroyed, roads were cut, communications, water and energy supply systems became frequently disrupted and areas of fertile land were often buried by mud. Based on (1) historical documents, (2) aerial photographs and (3) field observations, landslide sites were plotted on a topographic map, in order to establish a landslide density map for the island. Data obtained showed that landslide hazard is higher on (1) the main central volcanoes where the thickness of unconsolidated pyroclastic deposits is considerable high and (2) the old basaltic volcanic complex, marked by deep gullies developed on thick sequences of lava flows. In these areas, caldera walls, fault scarps, steep valley margins and sea cliffs are potentially hazardous.


2008 ◽  
Vol 70 (3) ◽  
pp. 343-357 ◽  
Author(s):  
Sébastien Bertrand ◽  
Julie Castiaux ◽  
Etienne Juvigné

AbstractWe document the mineralogical and geochemical composition of tephra layers identified in the late Quaternary sediments of Puyehue Lake (Southern Volcanic Zone of the Andes, Chile, 40°S) to identify the source volcanoes and to present the first tephrostratigraphic model for the region. For the last millennium, we propose a multi-criteria correlation model based on five tephra layers identified at seven coring sites. The two upper tephras are thin fine-grained green layers composed of more than 80% rhyodacitic glass shards, and associated to the AD 1960 and AD 1921–22 eruptions of the Puyehue-Cordon de Caulle volcanic complex. The third tephra is a sandy layer dominated by orthopyroxene, and related to the AD 1907 eruption of Rininahue maar. An olivine-rich tephra was deposited at the end of the 16th century, and a tephra characterized by a two-pyroxene association marks the second half of the first millennium AD. In addition, we detail the tephra succession of an 11.22-m-long sediment core covering the last 18,000 yr. The results demonstrate that the central province of the Southern Volcanic Zone has been active throughout the last deglaciation and the Holocene, with no increase in volcanic activity during glacial unloading.


Sign in / Sign up

Export Citation Format

Share Document