Geology and 40Ar/39Ar geochronology of the middle Miocene McDermitt volcanic field, Oregon and Nevada: Silicic volcanism associated with propagating flood basalt dikes at initiation of the Yellowstone hotspot

2017 ◽  
Vol 129 (9-10) ◽  
pp. 1027-1051 ◽  
Author(s):  
Thomas R. Benson ◽  
Gail A. Mahood ◽  
Marty Grove
Geology ◽  
2022 ◽  
Author(s):  
Liam O’Connor ◽  
Dawid Szymanowski ◽  
Michael P. Eddy ◽  
Kyle M. Samperton ◽  
Blair Schoene

Silicic magmas within large igneous provinces (LIPs) are understudied relative to volumetrically dominant mafic magmas despite their prevalence and possible contribution to LIP-induced environmental degradation. In the 66 Ma Deccan LIP (India), evolved magmatism is documented, but its geographic distribution, duration, and significance remain poorly understood. Zircons deposited in weathered Deccan lava flow tops (“red boles”) offer a means of indirectly studying potentially widespread, silicic, explosive volcanism spanning the entire period of flood basalt eruptions. We explored this record through analysis of trace elements and Hf isotopes in zircon crystals previously dated by U–Pb geochronology. Our results show that zircon populations within individual red boles fingerprint distinct volcanic sources that likely developed in an intraplate setting on cratonic Indian lithosphere. However, our red bole zircon geochemical and isotopic characteristics do not match those from previously studied silicic magmatic centers, indicating that they must derive from yet undiscovered or understudied volcanic centers associated with the Deccan LIP.


Author(s):  
Ali İskenderoğlu ◽  
NAMIK AYSAL

Western Anatolia comprises a vast amount of various volcanic successions spanning from Eocene to Upper Miocene periods. These units mainly display southward younging in broad sense and display large amounts of chemical variation that spanned from basalt to rhyolite. The southward younging of magmatism and chemical variations have been largely attributed to the retreat and roll-back of the Hellenic slab and the western escape of the Anatolian microplate. However, there is still a lack of high precision data to pinpoint the exact nature of the magmatism and lithospheric tectonics. In this contribution we investigated a poorly known region along the Western Anatolia along Manisa district called Karakılıçlı volcanic field. We investigated two different volcanic sections (Kalpakkaya and Çamlık hill) that display the best volcano-sedimentary features in terms of geochronology and geochemistry. Samples acquired from the bottom, middle and upper portions of these sections display Early-Middle Miocene ages of 17.64±0.20, 17.22±0.15, 16.16±0.17 and 16.36±0.13, 15.79±0.71 and 13.61±0.20 Ma respectively. The results indicate that the volcanism in the region generated by the melting of the mantle and/or lithospheric mantle by slab retreat and roll-back of the Hellenic slab and evolved in the shallow magma chambers/mushes by fractional crystallization, magma mixing and crustal assimilation.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Toe Naing Oo ◽  
Agung Harijoko ◽  
Lucas Donny Setijadji

The Kyaukmyet prospect lies approximately 5 km ENE of the highsulfidation Kyisintaung copper-gold deposit, Monywa district, central Myanmar. Geologically, the research area is remarked by magmatic extrusion that occurred during the Late Oligocene to Middle Miocene of Magyigon Formation which led to the outcrops of volcanic rocks. Study detailed on petrographical and geochemical of the Kyaukmyet volcanic rocks has not been performed before the present work. The principal aim of this paper is to document the petrographical and geochemical characteristics of volcanic suite rocks exposed in the Kyaukmyet prospect. The results of this data have provided insight into the origin of the rocks and petrogenetic processes during evolution. Petrographically, all the studied volcanic rocks in the research area show that trachytic and porphyritic textures with phenocrysts of quartz, plagioclase, and K-feldspar which are embedded in a fine to medium grained groundmass. The accessory minerals of this rock consist of biotite, chlorite and opaque mineral.Geochemically, these volcanic rocks having calc-alkaline nature and classified as volcanic field (rhyolite) as well as volcanic arc setting. Based on the chondrite normalized spider diagram, LREE has enriched to HREE in this area which indicated negative Eu anomaly and subduction tectonic setting.


Geology ◽  
2007 ◽  
Vol 35 (11) ◽  
pp. 1019 ◽  
Author(s):  
Ilya N. Bindeman ◽  
Kathryn E. Watts ◽  
Axel K. Schmitt ◽  
Lisa A. Morgan ◽  
Pat W.C. Shanks

1995 ◽  
Vol 69 (3-4) ◽  
pp. 159-186 ◽  
Author(s):  
Dana J. Bove ◽  
James C. Ratté ◽  
William C. McIntosh ◽  
Lawrence W. Snee ◽  
Kiyoto Futa

Author(s):  
I. T. Williamson ◽  
B. R. Bell

ABSTRACTPalaeocene volcanic activity is represented in west-central Skye, Inner Hebrides, Scotland, by a laterally extensive and thick pile of sub-aerial lavas mainly belonging to the alkali olivine basalt—hawaiite—mugearite—benmoreite—trachyte suite. The lavas are typical of many continental flood basalt suites and were principally fed from fissure eruptions similar to those of present day Iceland. Intercalated with the lavas are rare beds of heterogeneous volcaniclastic material, including breccias, conglomerates, sandstones and mudstones. The sequence forms a major portion of a larger volcanic field preserved within the NNE-SSW-elongated ‘Sea of the Hebrides’ sedimentary basin.Significant hiatuses in the volcanic activity are marked by deep-weathering profiles and thin sedimentary sequences comprising mudstones, ironstones, coals, sandstones and conglomerates. Palaeocurrent indicators and clast lithologies within the clastic sedimentary rocks indicate that erosion of a massif dominated by the Palaeocene Rum Igneous Complex and its roof rocks, c. 20 km to the S, provided abundant detritus to a river system which drained towards the N. Such sedimentary intercalations aid the stratigraphical subdivision of the lava field. Eight lava groups, each most likely with a different focus of fissure eruption, and divisible into mappable formations, together with two sedimentary formations, are recognised.The alkali olivine basalts are typically thin, with a tendency to form compound flows with limited lateral extents, whilst the hawaiites and mugearites are considerably thicker and cover large areas. Only very rarely are flow terminations observed. The original extents of the single benmoreite and rare trachytes cannot be determined from their limited erosional remnants. The more evolved flows tended to occur after brief hiatuses in the volcanic activity, indicated by well-developed lateritic tops to the underlying flows.The youngest preserved lava is a columnar-jointed olivine tholeiite with a MORB-like composition. The flow is at least 120 m thick and apparently ponded in a steep-sided palaeo-valley within the lava field.Three fault trends are recognised: parallel, normal and marginally oblique to the main NW-SEtrending regional dyke swarm, and dissect the lava field into a number of discrete blocks. The more significant of these faults may have been active during the development of the lava field, and in some instances instrumental in controlling the distribution of the flows.Later Tertiary erosion has removed an unknown thickness of material from the upper part of the lava field, the preserved thickness of which is estimated to be about 1·5 km.


2021 ◽  
Vol 151 (2) ◽  
pp. 159
Author(s):  
Emese M. Bordy ◽  
Orsolya Sztanó

Two levels of volcaniclastics, comprising conglomerates, sandstones and mudstones, are interbedded with upper middle Miocene (upper Badenian) andesite pyroclastics near the Hungarian-Slovakian border in the distal region of the Central Slovakian Neogene Volcanic Field. Based on the field sedimentological investigations, the facies of the volcaniclastics (e.g., lateral and vertical grain size changes, sedimentary structures, textures, clast composition), their geometry and field relationships are documented herein with the aim of reconstructing the depositional environment. The silica-cemented volcaniclastics are mostly andesite clasts with only ~ 5% being granitoid, quarzitic, and tuff clasts as well as charred fossil wood fragments. The coarse-grained facies association includes crudely stratified, tabular or lenticular, clast-supported pebble-cobble conglomerates with erosive basal surfaces, b-axis imbrication, alternating with sets of cross-bedding. The fine-grained facies association comprises cross-bedded pebbly to medium-grained sandstone and lenses of tuffaceous clayey siltstone with rare horizontal lamination and water-escape structures. Rip-up mudstone clasts, with diametre up to 1 m, are present in both facies associations, revealing the co-existence of abandoned silty palaeo-channel plugs. Facies associations are arranged in several 0.5-4-m-thick, fining-upwards successions that likely formed in shallow channels as downstream- to laterally accreting longitudinal bars, extensive gravel sheets and bars that migrated in peak flow during floods. Palaeocurrent indicators (i.e., clast imbrication, direction of planar cross-bedding, orientation of petrified wood logs) show bedload transport by traction currents, initially towards ~S, and later towards ~W. Intermittently debris flows also occurred. Cross-bedded sandstones formed as in-channel transverse bars during medium/low discharge. Variation of grain size shows frequent discharge fluctuations during permanently wet conditions in the late Badenian. The 4-5-m-deep, low-sinuosity channels were part of a high-energy, gravel-bed braided-river system on the south-eastern foothills of the Lysec palaeo-volcano. Here, pyroclastics were reworked and redeposited as volcaniclastics during inter-eruption, high-discharge episodes.


Sign in / Sign up

Export Citation Format

Share Document