Progressive spatial and temporal evolution of tectonic triggers and metasomatized mantle lithosphere sources for orogenic gold mineralization in a Triassic convergent margin: Kunlun-Qinling Orogen, central China

Author(s):  
Hesen Zhao ◽  
Qingfei Wang ◽  
David I. Groves ◽  
Jun Deng

Whether orogenic gold deposits formed from crustal or subcrustal sources is debated, and their link to orogenic processes is ambiguous. Gold mineralization in the Triassic East Kunlun−West Qinling Orogen, China, displays a spatial zonation in terms of its ages and stable isotope compositions. In the West Qinling segment, most gold deposits formed in a back-arc setting at 220∼210 Ma during a collisional episode within late slab rollback. These deposits have dominant δ34S of 5∼15‰ and δ18Ofluid of 10∼14‰, whereas those formed in the suture zone at 210∼170 Ma, during a post-collisional episode after slab break-off, have lower δ34S of −5∼+5‰ and δ18Ofluid of 6∼10‰. In the East Kunlun segment, those deposits that formed in a continental-arc setting and its related suture zone at 240∼200 Ma, in collisional to post-collisional episodes associated with slab break-off, have δ34S and δ18Ofluid values that are essentially similar to those in the West Qinling suture. δ34S values of ore sulfide separates and rims of zoned pyrites that have mantle-like signatures, in contrast with crustal signatures of host rocks, are indicative of subcrustal ore-fluid sources. The combined chronological and stable isotope shifts are consistent with a model in which ore fluids for gold mineralization in a back-arc setting were sourced from mantle lithosphere that was metasomatized by subducted oceanic sediment; whereas those in a continental-arc setting—including its suture zone—were sourced from fluid derived from altered oceanic crust. This study thus provides new insights into the complexity of orogenic gold systems in evolving orogens.

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 92 ◽  
Author(s):  
Nan Li ◽  
Jun Deng ◽  
David Groves ◽  
Ri Han

Six orogenic gold deposits constitute the Yangshan gold belt in the West Qinling Orogen. Gold is mostly invisible in solid solution or in the sulfide lattice, with minor visible gold associated with stibnite and in quartz-calcite veins. Detailed textural and trace-element analysis of sulfides in terms of a newly-erected paragenetic sequence for these deposits, together with previously published data, demonstrate that early magmatic-hydrothermal pyrite in granitic dike host-rocks has much higher Au contents than diagenetic pyrite in metasedimentary host rocks, but lower contents of As, Au, and Cu than ore-stage pyrite. Combined with sulfur isotope data, replacement textures in the gold ores indicate that the auriferous ore-fluids post-dated the granitic dikes and were not magmatic-hydrothermal in origin. There is a strong correlation between the relative activities of S and As and their total abundances in the ore fluid and the siting of gold in the Yangshan gold ores. Mass balance calculations indicate that there is no necessity to invoke remobilization processes to explain the occurrence of gold in the ores. The only exception is the Py1-2 replacement of Py1m, where fluid-mediated coupled dissolution-reprecipitation reactions may have occurred to exchange Au between the two pyrite phases.


2013 ◽  
Vol 734-737 ◽  
pp. 265-268
Author(s):  
Jun Hao Cui ◽  
Tao Ren

On the basis of predecessors study, this paper found that outbreak frequency of mantle plume is increase, while scale is reduce. The mantle plume provides ore-forming minerals to orogenic gold deposits, as well as affords force to supercontinent formation and decomposition, for the more controls the global tectonic. Supercontinent is the movement of upper crust that could be cause by combine factors of cold and heat mantle plume. Supercontinent supply suitable tectonic environment for orogenic gold deposits. Further, we discuss the relationship between mantle plume, supercontinent and orogenic gold deposit on space and time. With the evolution of the earth, especially the energy loss, the frequency of orogenic gold mineralization is increasing, while the scale is reducing.


2008 ◽  
Vol 72 (4) ◽  
pp. 953-970 ◽  
Author(s):  
T. Oberthür ◽  
T. W. Weiser

AbstractGold mineralization at the Viceroy Mine is hosted in extensional veins in steep shear zones that transect metabasalts of the Archaean Arcturus Formation. The gold mineralization is generally made up of banded or massive quartz carrying abundant coarse arsenopyrite. However, most striking is a distinct suite of Au-Bi-Te-S minerals, namely joseite-A (Bi4TeS2), joseite-B (Bi4Te2S), hedleyite (Bi7Te3), ikunolite (Bi4S3), ‘protojoseite’ (Bi3TeS), an unnamed mineral (Bi6Te2S), bismuthinite (Bi2S3), native Bi, native gold, maldonite (Au2Bi), and jonassonite (AuBi5S4). The majority of the Bi-Te-S phases is characterized by Bi/(Se+Te) ratios of >1. Accordingly, this assemblage formed at reduced conditions at relatively low fS2 and fTe2. Fluid-inclusion thermometry indicates depositional temperatures of the main stage of mineralization of up to 342°C, in the normal range of mesothermal, orogenic gold deposits worldwide. However, melting temperatures of Au-Bi-Te phases down to at least 235°C (assemblage (Au2Bi + Bi + Bi7Te3)) imply that the Au-Bi-Te phases have been present as liquids or melt droplets. Furthermore, the close association of native gold, native bismuth and other Bi-Te-S phases suggests that gold was scavenged from the hydrothermal fluids by Bi-Te-S liquids or melts. It is concluded that a liquid/melt-collecting mechanism was probably active at Viceroy Mine, where the distinct Au-Bi-Te-S assemblage either formed late as part of the main, arsenopyrite-dominated mineralization, or it represents a different mineralization event, related to rejuvenation of the shear system. In either case, some of the gold may have been extracted from pre-existing, gold-bearing arsenopyrite by Bi-Te-S melts, thus leading to an upgrade of the gold ores at Viceroy. The Au-Bi-Te-S assemblage represents an epithermal-style mineralization overprinted on an otherwise mesothermal (orogenic) gold mineralization.


Author(s):  
Kai Zhao ◽  
Huazhou Yao ◽  
Jianxiong Wang ◽  
Ghebsha Fitwi Ghebretnsae ◽  
Wenshuai Xiang ◽  
...  

The Koka gold deposit is located in the Elababu shear zone between the Nakfa terrane and the Adobha Abiy terrane, NW Eritrea. Based on the paragenetic study two main stages of gold mineralization were identified in the Koka gold deposit: 1) an early stage of pyrite-chalcopyrite-sphalerite-galena-gold-quartz vein; and 2) a second stage of pyrite-quartz veins. NaCl-aqueous inclusions, CO2-rich inclusions, and three-phase CO2-H2O inclusions occur in the quartz veins at Koka. The ore-bearing quartz veins formed at 268℃, from NaCl-CO2-H2O(-CH4) fluids averaging 5 wt% NaCl eq. The ore-forming mechanisms include fluid immiscibility during stage I, and mixing with meteoric water during stage II. Oxygen, hydrogen and carbon isotopes suggest that the ore-forming fluids originated as mixtures of metamorphic water, meteoric water and magmatic water, whereas sulfur isotope suggest an igneous origin. Features of geology and ore-forming fluid at Koka deposit are similar to those of orogenic gold deposits, suggesting the Koka deposit might be an orogenic gold deposit related to granite.


2021 ◽  
Author(s):  
Quentin Masurel ◽  
Paul Morley ◽  
Nicolas Thébaud ◽  
Helen McFarlane

Abstract The ~15-Moz Ahafo South gold camp is located in southwest Ghana, the world’s premier Paleoproterozoic gold subprovince. Major orogenic gold deposits in the camp include Subika, Apensu, Awonsu, and Amoma. These deposits occur along an ~15-km strike length of the Kenyase-Yamfo shear zone, a major tectonostratigraphic boundary juxtaposing metamorphosed volcano-plutonic rocks of the Sefwi belt against metamorphosed volcano-sedimentary rocks of the Sunyani-Comoé basin. In this study, we document the geologic setting, structural geometry, and rheological architecture of the Ahafo South gold deposits based on the integration of field mapping, diamond drill core logging, 3-D geologic modeling, and the geologic interpretation of aeromagnetic data. At the camp scale, the Awonsu, Apensu, and Amoma deposits lie along strike from one another and share similar hanging-wall plutonic rocks and footwall volcano-sedimentary rocks. In contrast, the Subika gold deposit is hosted entirely in hanging-wall plutonic rocks. Steeper-dipping segments (e.g., Apensu, Awonsu, Subika) and right-hand flexures (e.g., Amoma, Apensu) in the Kenyase-Yamfo shear zone and subsidiary structures appear to have represented sites of enhanced damage and fluid flux (i.e., restraining bends). All gold deposits occur within structural domains bounded by discontinuous, low-displacement, sinistral N-striking tear faults oblique to the orogen-parallel Kenyase-Yamfo shear zone. At the deposit scale, ore-related hydrothermal alteration is zoned, with distal chlorite-sericite grading into proximal silica-albite-Fe-carbonate mineral assemblages. Alteration halos are restricted to narrow selvages around quartz-carbonate vein arrays in multiple stacked ore shoots at Subika, whereas these halos extend 30 to 100 m away from the ore zones at Apensu and Awonsu. There is a clear spatial association between shallow-dipping mafic dikes, mafic chonoliths, shear zones, and economic gold mineralization. The abundance of mafic dikes and chonoliths within intermediate to felsic hanging-wall plutonic host rocks provided rheological heterogeneity that favored the formation of enhanced fracture permeability, promoting the tapping of ore fluid(s). Our interpretation is that these stacked shallow-dipping mafic dike arrays also acted as aquitards, impeding upward fluid flow within the wider intrusive rock mass until a failure threshold was episodically reached due to fluid overpressure, resulting in transient fracture-controlled upward propagation of the ore-fluid(s). Our results indicate that high-grade ore shoots at Ahafo South form part of vertically extensive fluid conduit systems that are primarily controlled by the rheological architecture of the rock mass.


2019 ◽  
Vol 10 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Yafei Wu ◽  
Jianwei Li ◽  
Katy Evans ◽  
Denis Fougerouse ◽  
Kirsten Rempel

Sign in / Sign up

Export Citation Format

Share Document