Termination of a fossil continent-ocean fracture zone imaged with three-dimensional seismic data: The Chain Fracture Zone, eastern equatorial Atlantic

Geology ◽  
2005 ◽  
Vol 33 (8) ◽  
pp. 641 ◽  
Author(s):  
Richard J. Davies ◽  
Christopher J. MacLeod ◽  
Richard Morgan ◽  
Sepribo E. Briggs
Geology ◽  
2005 ◽  
Vol 33 (8) ◽  
pp. 641-644 ◽  
Author(s):  
Richard J. Davies ◽  
Christopher J. MacLeod ◽  
Richard Morgan ◽  
Sepribo E. Briggs

Abstract We describe the first three-dimensional imaging of the termination of a continent-ocean fracture zone (COFZ), the Chain Fracture Zone, located offshore of the Niger Delta. The COFZ marks the abrupt transition between extended continental crust, comprising multiple half-graben, and oceanic crust that has a pervasive seafloor-spreading fabric. It preserves a history of continent-continent shearing followed by oceanic crust accretion and continent-ocean shearing during the inception of Atlantic rifting. The termination is marked by steeply dipping faults with sigmoidal planform and thrusts that probably formed as a result of continent-continent or continent-ocean shearing. These are crosscut by the seafloor-spreading fabric that formed during the subsequent phase of oceanic crust accretion. The accreted oceanic crust is cut by listric and planar faults that curve in the direction of the COFZ, where they terminate. The transition from continental to oceanic crust across the COFZ is sharp and resolvable to ∼100–200 m. Complexes of lava flows emanate from volcanoes along the COFZ, bifurcating and trifurcating down the volcano flanks. The volcanoes are 2–5.5 km wide and 1.4 km in height relative to adjacent oceanic crust and were injected at the COFZ, probably as the spreading center migrated along it.


2021 ◽  
Author(s):  
Vladimir Cheverda ◽  
Vadim Lisitsa ◽  
Maksim Protasov ◽  
Galina Reshetova ◽  
Andrey Ledyaev ◽  
...  

Abstract To develop the optimal strategy for developing a hydrocarbon field, one should know in fine detail its geological structure. More and more attention has been paid to cavernous-fractured reservoirs within the carbonate environment in the last decades. This article presents a technology for three-dimensional computing images of such reservoirs using scattered seismic waves. To verify it, we built a particular synthetic model, a digital twin of one of the licensed objects in the north of Eastern Siberia. One distinctive feature of this digital twin is the representation of faults not as some ideal slip surfaces but as three-dimensional geological bodies filled with tectonic breccias. To simulate such breccias and the geometry of these bodies, we performed a series of numerical experiments based on the discrete elements technique. The purpose of these experiments is the simulation of the geomechanical processes of fault formation. For the digital twin constructed, we performed full-scale 3D seismic modeling, which made it possible to conduct fully controlled numerical experiments on the construction of wave images and, on this basis, to propose an optimal seismic data processing graph.


2001 ◽  
Vol 176 (1-4) ◽  
pp. 101-119 ◽  
Author(s):  
L Gasperini ◽  
D Bernoulli ◽  
E Bonatti ◽  
A.M Borsetti ◽  
M Ligi ◽  
...  

Geophysics ◽  
1972 ◽  
Vol 37 (3) ◽  
pp. 417-430 ◽  
Author(s):  
G. G. Walton

The three‐dimensional seismic method is a different way of gathering and presenting seismic data. Instead of showing the subsurface beneath a profile line, 3-D displays give an, areal picture from the shallowest reflector to the deepest one that can be found seismically. Data are collected in the field with cross‐spreads that provide over 2000 evenly spaced depth points on each reflecting interface. Several variations of the cross‐spread technique give the same subsurface coverage while providing flexibility in data gathering. Because of the dense coverage, the method is best suited for problems requiring great detail, such as production problems. The usual presentation of 3-D data is a visual, moving display of emerging wavefronts covering four sq mi of surface. From this dynamic display, average velocity to each reflector and the dip direction and magnitude can be computed. The method has proved especially useful for the recognition of faults and determination of fault directions.


2016 ◽  
Author(s):  
John Milsom ◽  
Phil Roach ◽  
Chris Toland ◽  
Don Riaroh ◽  
Chris Budden ◽  
...  

ABSTRACT As part of an ongoing exploration effort, approximately 4000 line-km of seismic data have recently been acquired and interpreted within the Comoros Exclusive Economic Zone (EEZ). Magnetic and gravity values were recorded along the seismic lines and have been integrated with pre-existing regional data. The combined data sets provide new constraints on the nature of the crust beneath the West Somali Basin (WSB), which was created when Africa broke away from Gondwanaland and began to move north. Despite the absence of clear sea-floor spreading magnetic anomalies or gravity anomalies defining a fracture zone pattern, the crust beneath the WSB has been generally assumed to be oceanic, based largely on regional reconstructions. However, inappropriate use of regional magnetic data has led to conclusions being drawn that are not supported by evidence. The identification of the exact location of the continent-ocean boundary (COB) is less simple than would at first sight appear and, in particular, recent studies have cast doubt on a direct correlation between the COB and the Davie Fracture Zone (DFZ). The new high-quality reflection seismic data have imaged fault patterns east of the DFZ more consistent with extended continental crust, and the accompanying gravity and magnetic surveys have shown that the crust in this area is considerably thicker than normal oceanic and that linear magnetic anomalies typical of sea-floor spreading are absent. Rifting in the basin was probably initiated in Karoo times but the generation of new oceanic crust may have been delayed until about 154 Ma, when there was a switch in extension direction from NW-SE to N-S. From then until about 120 Ma relative movement between Africa and Madagascar was accommodated by extension in the West Somali and Mozambique basins and transform motion along the DFZ that linked them. A new understanding of the WSB can be achieved by taking note of newly-emerging concepts and new data from adjacent areas. The better-studied Mozambique Basin, where comprehensive recent surveys have revealed an unexpectedly complex spreading history, may provide important analogues for some stages in WSB evolution. At the same time the importance of wide continent-ocean transition zones marked by the presence of hyper-extended continental crust has become widely recognised. We make use of these new insights in explaining the anomalous results from the southern WSB and in assessing the prospectivity of the Comoros EEZ.


2020 ◽  
Vol 117 (45) ◽  
pp. 27869-27876
Author(s):  
Martino Foschi ◽  
Joseph A. Cartwright ◽  
Christopher W. MacMinn ◽  
Giuseppe Etiope

Geologic hydrocarbon seepage is considered to be the dominant natural source of atmospheric methane in terrestrial and shallow‐water areas; in deep‐water areas, in contrast, hydrocarbon seepage is expected to have no atmospheric impact because the gas is typically consumed throughout the water column. Here, we present evidence for a sudden expulsion of a reservoir‐size quantity of methane from a deep‐water seep during the Pliocene, resulting from natural reservoir overpressure. Combining three-dimensional seismic data, borehole data and fluid‐flow modeling, we estimate that 18–27 of the 23–31 Tg of methane released at the seafloor could have reached the atmosphere over 39–241 days. This emission is ∼10% and ∼28% of present‐day, annual natural and petroleum‐industry methane emissions, respectively. While no such ultraseepage events have been documented in modern times and their frequency is unknown, seismic data suggest they were not rare in the past and may potentially occur at present in critically pressurized reservoirs. This neglected phenomenon can influence decadal changes in atmospheric methane.


Sign in / Sign up

Export Citation Format

Share Document