scholarly journals Preferential dissolution of uranium-rich zircon can bias the hafnium isotope compositions of granites

Geology ◽  
2021 ◽  
Author(s):  
Peng Gao ◽  
Chris Yakymchuk ◽  
Jian Zhang ◽  
Changqing Yin ◽  
Jiahui Qian ◽  
...  

Hafnium (Hf) isotopes in zircon are important tracers of granite petrogenesis and continental crust evolution. However, zircon in granites generally shows large Hf isotope variations, and the reasons for this are debated. We applied U-Pb geochronology, trace-element, and Hf isotope analyses of zircon from the Miocene Himalayan granites to address this issue. Autocrystic zircon had εHf values (at 20 Ma) of –12.0 to –4.3 (median = –9). Inherited zircon yielded εHf values (at 20 Ma) of –34.8 to +0.3 (median = –13); the majority of εHf values were lower than those of autocrystic zircon. The εHf values of inherited zircon with high U concentrations resembled those of autocrystic zircon. Geochemical data indicates that the granites were generated during relatively low-temperature (<800 °C) partial melting of metasedimentary rocks, which, coupled with kinetic hindrance, may have led to the preferential dissolution of high-U zircon that could dissolve more efficiently into anatectic melt due to higher amounts of radiation damage. Consequently, Hf values of autocrystic zircon can be biased toward the values of U-rich zircon in the source. By contrast, literature data indicate that granites generated at high temperatures (<820–850 °C) generally contain autocrystic and inherited zircons with comparable Hf isotope values. During higher-temperature melting, indiscriminate dissolution of source zircon until saturation is reached will result in near-complete inheritance of Hf isotope ratios from the source. Our results impose an extra layer of complexity to interpretation of the zircon Hf isotope archive that is not currently considered.

Geology ◽  
2021 ◽  
Author(s):  
Panlao Zhao ◽  
Xu Chu ◽  
Anthony E. Williams-Jones ◽  
Jingwen Mao ◽  
Shunda Yuan

Most tungsten (W) and tin (Sn) deposits are associated with highly evolved granites derived from the anatexis of metasedimentary rocks. They are commonly separated in both space and time, and in the rare cases where the W and Sn mineralization are part of a single deposit, the two metals are temporally separate. The factors controlling this behavior, however, are not well understood. Our compilation of whole-rock geochemical data for W- and Sn-related granites in major W-Sn metallogenic belts shows that the Sn-related granites are generally the products of higher-temperature partial melting (~800 °C) than the W-related granites (~750 °C). Thermodynamic modeling of partial melting and metal partitioning shows that W is incorporated into the magma formed during low-temperature muscovite-dehydration melting, whereas most of the Sn is released into the magma at a higher temperature during biotite-dehydration melting; the Sn of the magma may be increased significantly if melt is extracted prior to biotite melting. At the same degree of partial melting, the concentrations of the two metals in the partial melt are controlled by their concentration in the protolith. Thus, the nature of the protolith and the melting temperature and subsequent evolution of the magma all influence the metallogenic potential of a magma and, in combination, helped control the spatial and temporal segregation of W and Sn deposits in all major W-Sn metallogenic belts.


2021 ◽  
Author(s):  
M.R. Cecil ◽  
et al.

<div>Includes sample location information, whole rock geochemical data, and individual zircon trace element, Lu-Hf isotope, and O isotope data.<br></div>


2021 ◽  
Author(s):  
Yuan-Yuan Jiang ◽  
et al.

The chemical compositions of minerals from the paragneisses (Tables S1–S3), the zircon and monazite age and trace element data of the paragneisses and leucosome (Tables S4–S5), and the zircon Lu-Hf isotope data of the paragneisses and leucosome (Table S6) from the eastern Gangdese magmatic arc.


2021 ◽  
Author(s):  
Yuan-Yuan Jiang ◽  
et al.

The chemical compositions of minerals from the paragneisses (Tables S1–S3), the zircon and monazite age and trace element data of the paragneisses and leucosome (Tables S4–S5), and the zircon Lu-Hf isotope data of the paragneisses and leucosome (Table S6) from the eastern Gangdese magmatic arc.


2021 ◽  
Author(s):  
M.R. Cecil ◽  
et al.

<div>Includes sample location information, whole rock geochemical data, and individual zircon trace element, Lu-Hf isotope, and O isotope data.<br></div>


Author(s):  
Chong Ma ◽  
David A. Foster ◽  
Paul A. Mueller ◽  
Barbara L. Dutrow ◽  
Jeffery Marsh

In this study, we present whole-rock geochemistry and Sm-Nd data; zircon trace element, U-Pb, and Lu-Hf data; titanite U-Pb dating; and structural analysis of igneous and metasedimentary rocks of the Sawtooth metamorphic complex that provide insight into regional metamorphism, partial melting, and crustal thickening in the Idaho batholith segment of the Cordilleran orogen. Four magmatic events are revealed: (1) pre-tectonic felsic magmatism at ca. 156 Ma, (2) syn-tectonic mafic and felsic magmatism between ca. 100 Ma and ca. 92 Ma, (3) felsic magmatism concurrent with late-stage deformation at ca. 89−84 Ma, and (4) post-tectonic felsic magmatism at ca. 77 Ma. The multiple generations of felsic magmatism include a variety of sedimentary- and igneous-derived granitoids distinguished by zircon trace element compositions (e.g., U/Ce versus Th and Ce/Sm versus Yb/Gd) and were sourced from progressively more evolved crustal components as shown by Lu-Hf and Sm-Nd isotopic data. U-Pb data of metamorphic zircons and titanites from high-grade metasedimentary rocks suggest that regional metamorphism occurred from ca. 100−93 Ma, which was characterized by granulite-facies partial melting and concurrent growth of metamorphic zircons and garnets. The episodic magmatism in the Sawtooth metamorphic complex records pervasive melt migration in a hot, mid-crustal setting at ca. 100‒92 Ma and additional magma ascent in a cool, upper-crustal setting at ca. 77 Ma. The uplift of the Sawtooth metamorphic complex from mid- to upper-crust was likely caused by underthrusting at lower crustal levels coupled with erosion and thinning of the upper crust. This work suggests that the crust of the Cordilleran hinterland in the Idaho batholith region underwent significant thickening from ca. 100‒84 Ma, and a crust of Andean-like thickness was probably achieved by ca. 84 Ma. By ca. 77 Ma, the central Idaho crust started to thin likely due to mid-crustal flow and surface erosion. The new data from the Sawtooth metamorphic complex are consistent with the two major magmatic flare-ups in the Late Jurassic and Late Cretaceous in the U.S. Cordilleran orogen.


Author(s):  
R. J. Pankhurst ◽  
C. W. Rapela ◽  
C. M. Fanning

Three granitoid types are recognised in the Famatinian magmatic belt of NW Argentina, based on lithology and new geochemical data: (a) a minor trondhjemite–tonalite–granodiorite (TTG) group, (b) a metaluminous I-type gabbro-monzogranite suite, and (c) S-type granites. The latter occur as small cordieritic intrusions associated with 1-type granodiorites and as abundant cordierite-bearing facies in large batholithic masses. Twelve new SHRIMP U-Pb zircon ages establish the contemporaneity of all three types in Early Ordovician times (mainly 470-490 Ma ago). Sr- and Nd-isotopic data suggest that, apart from some TTG plutons of asthenospheric origin, the remaining magmas were derived from a Proterozoic crust-lithospheric mantle section. Trace element modelling suggests that the TTG originated by variable melting of a depleted gabbroid source at 10-12kbar, and the I-type tonalite-granodiorite suite by melting of a more enriched lithospheric source atc.5 kbar. The voluminous intermediate and acidic I-types involved hybridisation with lower and middle crustal melts. The highly peraluminous S-type granites have isotopic and inherited zircon patterns similar to those of Cambrian supracrustal metasedimentary rocks deposited in the Pampean cycle, and were derived from them by local anatexis. Other major components of the S-type batholiths involved melting of deep crust and mixing with the I-type magmas, leading to an isotopic and geochemical continuum.


Sign in / Sign up

Export Citation Format

Share Document