scholarly journals The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces

Geology ◽  
2021 ◽  
Author(s):  
Panlao Zhao ◽  
Xu Chu ◽  
Anthony E. Williams-Jones ◽  
Jingwen Mao ◽  
Shunda Yuan

Most tungsten (W) and tin (Sn) deposits are associated with highly evolved granites derived from the anatexis of metasedimentary rocks. They are commonly separated in both space and time, and in the rare cases where the W and Sn mineralization are part of a single deposit, the two metals are temporally separate. The factors controlling this behavior, however, are not well understood. Our compilation of whole-rock geochemical data for W- and Sn-related granites in major W-Sn metallogenic belts shows that the Sn-related granites are generally the products of higher-temperature partial melting (~800 °C) than the W-related granites (~750 °C). Thermodynamic modeling of partial melting and metal partitioning shows that W is incorporated into the magma formed during low-temperature muscovite-dehydration melting, whereas most of the Sn is released into the magma at a higher temperature during biotite-dehydration melting; the Sn of the magma may be increased significantly if melt is extracted prior to biotite melting. At the same degree of partial melting, the concentrations of the two metals in the partial melt are controlled by their concentration in the protolith. Thus, the nature of the protolith and the melting temperature and subsequent evolution of the magma all influence the metallogenic potential of a magma and, in combination, helped control the spatial and temporal segregation of W and Sn deposits in all major W-Sn metallogenic belts.

Geology ◽  
2021 ◽  
Author(s):  
Peng Gao ◽  
Chris Yakymchuk ◽  
Jian Zhang ◽  
Changqing Yin ◽  
Jiahui Qian ◽  
...  

Hafnium (Hf) isotopes in zircon are important tracers of granite petrogenesis and continental crust evolution. However, zircon in granites generally shows large Hf isotope variations, and the reasons for this are debated. We applied U-Pb geochronology, trace-element, and Hf isotope analyses of zircon from the Miocene Himalayan granites to address this issue. Autocrystic zircon had εHf values (at 20 Ma) of –12.0 to –4.3 (median = –9). Inherited zircon yielded εHf values (at 20 Ma) of –34.8 to +0.3 (median = –13); the majority of εHf values were lower than those of autocrystic zircon. The εHf values of inherited zircon with high U concentrations resembled those of autocrystic zircon. Geochemical data indicates that the granites were generated during relatively low-temperature (<800 °C) partial melting of metasedimentary rocks, which, coupled with kinetic hindrance, may have led to the preferential dissolution of high-U zircon that could dissolve more efficiently into anatectic melt due to higher amounts of radiation damage. Consequently, Hf values of autocrystic zircon can be biased toward the values of U-rich zircon in the source. By contrast, literature data indicate that granites generated at high temperatures (<820–850 °C) generally contain autocrystic and inherited zircons with comparable Hf isotope values. During higher-temperature melting, indiscriminate dissolution of source zircon until saturation is reached will result in near-complete inheritance of Hf isotope ratios from the source. Our results impose an extra layer of complexity to interpretation of the zircon Hf isotope archive that is not currently considered.


1999 ◽  
Vol 36 (7) ◽  
pp. 1131-1147 ◽  
Author(s):  
Katsuyuki Yamashita ◽  
Robert A Creaser ◽  
James U Stemler ◽  
Tony W Zimaro

New geochemical and Nd-Pb isotopic data for ~ 2.62-2.59 Ga granitoids from the southwest Slave Province are used to determine the source(s) of granitoid magmas, to evaluate the role of pre-2.8 Ga basement during this magmatism, and to refine the existing Nd-Pb isotopic structure of the western Slave Province. The Pb isotopic data require crust older than ~3.2 Ga as a granitoid protolith, whereas the Nd isotopic data require input from juvenile crustal material. This discrepancy is explained if the granitoid protoliths are mixtures of ancient basement and ~2.7 Ga juvenile crust in varying proportions. Specifically, granitoids from the southwestern Slave Province require 10-30% basement, whereas granitoids from other parts of the western Slave Province require >50%. Incorporation of basement as a protolith may be achieved indirectly, by assimilation of basement during juvenile ~2.7 Ga magmatism, or directly during ~2.62-2.59 Ga magmatism. The granitoid isotopic data suggest that indirect basement input was important on a regional scale, but direct input may have also taken place in some areas of the western Slave Province, particularly along the ~111°W "isotopic boundary" zone previously recognized. The geochemical characteristics of these granitoids are compatible with an origin by partial melting of dominantly amphibolite and metasedimentary rocks to produce the ~2.61 Ga and ~2.59 Ga magmatism, respectively; partial melting occurred in response to regional crustal thickening at this time.


The role of partial melting in the uniform lithospheric stretching model of continental margin formation is explored. It is shown that the transition from continental lithosphere stretching to oceanic accretion is most probably controlled by the production of a significant amount of partial melting in the asthenosphere immediately below the lithosphere, which requires stretching factors larger than 3. It is also shown that, at stretching factors exceeding 2, the law of subsidence is significantly changed by the presence of partial melt in the underlying asthenosphere. The implications for the existence of deep continental margin basins on thinned continental crusts are examined. The Armorican deep continental margin basin is taken as an example.


2018 ◽  
Vol 481 (1) ◽  
pp. 147-173 ◽  
Author(s):  
T. Imayama ◽  
T. Takeshita ◽  
K. Yi ◽  
M. Fukuyama

AbstractEarly Oligocene partial melting and prolonged low-pressure–low-temperature (low-P/T) metamorphism were investigated in migmatites and orthogneisses from the upper High Himalaya Crystalline Sequence (HHCS) in the far east of Nepal. The migmatites were formed by biotite dehydration melting at c. 800°C from 33 to 25 Ma. Cordierite was only produced at shallow crustal levels at pressures <6 kbar. After Early Oligocene partial melting, the low-P/T metamorphism continued until 17 Ma during exhumation of the cordierite-bearing migmatites. Early Oligocene biotite dehydration melting in the upper HHCS occurred at different times and locations from the Early Miocene muscovite dehydration melting in the underlying HHCS and the metamorphic discontinuity was accompanied by thrusting of the High Himalayan Discontinuity at c. 27–19 Ma. Pervasive partial melting and prolonged low-P/T metamorphism in the upper HHCS is more compatible with a lateral southwards channel flow of the upper HHCS along the High Himalayan Discontinuity, whereas current channel flow models explaining the exhumation of the HHCS as driven only by the coupled activity of the Main Central Thrust and South Tibetan Detachment have faced difficulties in explaining the timing of the low-P/T metamorphism observed in the upper HHCS.Supplementary material: The representative cordierite compositions from the cordierite migmatites, the far east of Nepal are available at https://doi.org/10.6084/m9.figshare.c.4068815


2021 ◽  
Author(s):  
Panlao Zhao ◽  
Shunda Yuan ◽  
et al.

Partial melting and fractional crystallization modeling method, and explanation of supplemental figures.<br>


2021 ◽  
Author(s):  
Panlao Zhao ◽  
Shunda Yuan ◽  
et al.

Partial melting and fractional crystallization modeling method, and explanation of supplemental figures.<br>


Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 1-18 ◽  
Author(s):  
S.A. Newman ◽  
W.D. Comper

The role of ‘generic’ physical mechanisms in morphogenesis and pattern formation of tissues is considered. Generic mechanisms are defined as those physical processes that are broadly applicable to living and non-living systems, such as adhesion, surface tension and gravitational effects, viscosity, phase separation, convection and reaction-diffusion coupling. They are contrasted with ‘genetic’ mechanisms, a term reserved for highly evolved, machine-like, biomolecular processes. Generic mechanisms acting upon living tissues are capable of giving rise to morphogenetic rearrangements of cytoplasmic, tissue and extracellular matrix components, sometimes leading to ‘microfingers’, and to chemical waves or stripes. We suggest that many morphogenetic and patterning effects are the inevitable outcome of recognized physical properties of tissues, and that generic physical mechanisms that act on these properties are complementary to, and interdependent with genetic mechanisms. We also suggest that major morphological reorganizations in phylogenetic lineages may arise by the action of generic physical mechanisms on developing embryos. Subsequent evolution of genetic mechanisms could stabilize and refine developmental outcomes originally guided by generic effects.


Sign in / Sign up

Export Citation Format

Share Document