Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina

Author(s):  
R. J. Pankhurst ◽  
C. W. Rapela ◽  
C. M. Fanning

Three granitoid types are recognised in the Famatinian magmatic belt of NW Argentina, based on lithology and new geochemical data: (a) a minor trondhjemite–tonalite–granodiorite (TTG) group, (b) a metaluminous I-type gabbro-monzogranite suite, and (c) S-type granites. The latter occur as small cordieritic intrusions associated with 1-type granodiorites and as abundant cordierite-bearing facies in large batholithic masses. Twelve new SHRIMP U-Pb zircon ages establish the contemporaneity of all three types in Early Ordovician times (mainly 470-490 Ma ago). Sr- and Nd-isotopic data suggest that, apart from some TTG plutons of asthenospheric origin, the remaining magmas were derived from a Proterozoic crust-lithospheric mantle section. Trace element modelling suggests that the TTG originated by variable melting of a depleted gabbroid source at 10-12kbar, and the I-type tonalite-granodiorite suite by melting of a more enriched lithospheric source atc.5 kbar. The voluminous intermediate and acidic I-types involved hybridisation with lower and middle crustal melts. The highly peraluminous S-type granites have isotopic and inherited zircon patterns similar to those of Cambrian supracrustal metasedimentary rocks deposited in the Pampean cycle, and were derived from them by local anatexis. Other major components of the S-type batholiths involved melting of deep crust and mixing with the I-type magmas, leading to an isotopic and geochemical continuum.

1999 ◽  
Vol 36 (10) ◽  
pp. 1655-1669 ◽  
Author(s):  
Jacquelyn E Stevens ◽  
J Brendan Murphy ◽  
Fred W Chandler

Geochemical and isotopic data from the clastic rocks of the Namurian Lismore Formation in mainland Nova Scotia identify key episodes of tectonic activity during the development of the Maritimes Basin in Atlantic Canada. The Lismore Formation forms part of the Mabou Group and is an upward-coarsening 2500 m thick fluvial sequence deposited in the Merigomish sub-basin along the southern flank of the Maritimes Basin. Based on stratigraphic evidence, the Lismore Formation can be divided into upper and lower members which reflect variations in depositional environment and paleoclimate. The geochemical and isotopic data may also be subdivided into two groupings that primarily reflect varying contributions from accessory phases, clay minerals, or rock fragments. This subdivision occurs 115 m above the base of the upper member. The data from the lower grouping (group A) show an important contribution from underlying Silurian rocks, with a relatively minor contribution from Late Devonian granitoid rocks from the adjacent Cobequid Highlands and possibly metasedimentary rocks from the Meguma Terrane to the south. The data from the upper grouping (group B) reveal a more important contribution from the Cobequid Highlands granitoid rocks. This variation in geochemistry is thought to constrain the age of renewed motion and uplift along the faults along the southern flank of the Maritimes Basin and, more generally, suggests that geochemical and isotopic data of continental clastic rocks may help constrain the age of tectonic events that influence deposition of basin-fill rocks.


1984 ◽  
Vol 75 (2) ◽  
pp. 259-273 ◽  
Author(s):  
W. E. Stephens ◽  
A. N. Halliday

ABSTRACTNew major- and trace-element data for granitoid plutons from the Grampian Highlands, the Midland Valley and the Southern Uplands of Scotland are presented and discussed. The study is restricted to ‘late granitoids’ (all younger than 430 Ma); the term ‘granitoid’ is used in a wide sense to encompass all plutonic components of a zoned intrusion of this age, sometimes including diorites and ultrabasic cumulate rocks. The data indicate that as a whole the province is chemically high-K calc-alkalic. Other notable enrichments are in Sr and Ba, and a marked geographical difference in these trace-elements is found between plutons of the SW Grampian Highlands and those of the Southern Highlands, the Midland Valley, and the Southern Uplands. Plutons of the NE Highlands tend to be more geochemically evolved than those further SW and those of the Midland Valley and Southern Uplands.When petrographical and geochemical data are considered, three plutonic suites are recognised: (1) the Cairngorm suite comprising plutons of the NE Highlands, (2) the Argyll suite comprising plutons from the SW Highlands, and (3) the S of Scotland suite comprising plutons from the Southern Highlands, Midland Valley and the Southern Uplands excluding Criffell and the Cairnsmore of Fleet. It is proposed that the more acidic granitoids are dominantly the products of I-type crustal sources, but certain diorites and the more basic members of zoned plutons have a substantial mantle component. The elevated Sr and Ba levels in granitoids of the Argyll suite may reflect the influence of incompatible-element-rich fluids from the mantle in the petrogenesis of this suite. The relatively anhydrous pyroxene-mica diorites of the S of Scotland suite are richer in Ni and Cr and appear to represent mantle-derived melts. The relationships between these data and already published isotopic data are discussed.


Geology ◽  
2021 ◽  
Author(s):  
Peng Gao ◽  
Chris Yakymchuk ◽  
Jian Zhang ◽  
Changqing Yin ◽  
Jiahui Qian ◽  
...  

Hafnium (Hf) isotopes in zircon are important tracers of granite petrogenesis and continental crust evolution. However, zircon in granites generally shows large Hf isotope variations, and the reasons for this are debated. We applied U-Pb geochronology, trace-element, and Hf isotope analyses of zircon from the Miocene Himalayan granites to address this issue. Autocrystic zircon had εHf values (at 20 Ma) of –12.0 to –4.3 (median = –9). Inherited zircon yielded εHf values (at 20 Ma) of –34.8 to +0.3 (median = –13); the majority of εHf values were lower than those of autocrystic zircon. The εHf values of inherited zircon with high U concentrations resembled those of autocrystic zircon. Geochemical data indicates that the granites were generated during relatively low-temperature (<800 °C) partial melting of metasedimentary rocks, which, coupled with kinetic hindrance, may have led to the preferential dissolution of high-U zircon that could dissolve more efficiently into anatectic melt due to higher amounts of radiation damage. Consequently, Hf values of autocrystic zircon can be biased toward the values of U-rich zircon in the source. By contrast, literature data indicate that granites generated at high temperatures (<820–850 °C) generally contain autocrystic and inherited zircons with comparable Hf isotope values. During higher-temperature melting, indiscriminate dissolution of source zircon until saturation is reached will result in near-complete inheritance of Hf isotope ratios from the source. Our results impose an extra layer of complexity to interpretation of the zircon Hf isotope archive that is not currently considered.


1987 ◽  
Vol 51 (360) ◽  
pp. 183-202 ◽  
Author(s):  
R. Macdonald ◽  
R. S. J. Sparks ◽  
H. Sigurdsson ◽  
D. P. Mattey ◽  
D. W. McGarvie ◽  
...  

AbstractMajor and trace element and Sr, Nd and O isotopic data are presented for ferrobasalts, icelandites, rhyolites, mixed pumices and silicic xenoliths of the 1875 eruption of Askja. Trace element modelling and Sr and Nd data largely confirm previous major element calculations that fractional crystallization was dominant in the generation of the basalt-ferrobasalt-icelandite-rhyolite suite. Relative enrichment in Rb (and Th and U?), depletion in Cs, and low values of δ18O/16O, in the rhyolites are not explained by this mechanism alone. The silicic magmas were selectively contaminated by diffusion from partially molten granitic wall rocks, now found as xenoliths in the eruptive products, the process being particularly marked by lower δ18O and Cs/Rb ratios in the rhyolites than in the associated basalts. This is the first record of a combined fractional crystallization-selective contamination process in an Icelandic silicic complex.


Lithos ◽  
2021 ◽  
pp. 106407
Author(s):  
Fatma Kourim ◽  
Kuo-Lung Wang ◽  
Andreas Beinlich ◽  
Chia-Ju Chieh ◽  
Nick Dygert ◽  
...  

2019 ◽  
Vol 60 (11) ◽  
pp. 2169-2200 ◽  
Author(s):  
Armin Zeh ◽  
Allan H Wilson ◽  
Dominik Gudelius ◽  
Axel Gerdes

Abstract The origin of magmas that formed the Bushveld Complex remains highly debated in spite of many decades of intense research. Previous geochemical–petrological studies have shown a strong mantle derivation resulting ultimately in highly economic ore bodies of platinum group elements and chromium. However, geochemistry also points to the contribution of a significant crustal component, which may have been derived singly or in combination from a number of different sources. These include subcontinental lithospheric mantle that was enriched prior to Bushveld magma formation, possibly by subduction, assimilation of lower and upper crust during magma ascent, and contamination during magma chamber accretion within sedimentary rocks of the enclosing Transvaal Supergroup. In this study, the contributions of these various reservoirs will be evaluated by employing Hf isotopic data of well-characterized zircon grains in mafic, felsic and metasedimentary rocks, together with Zr–Hf bulk-rock compositions. The results reveal that magmatic zircon grains in mafic cumulate rocks from the floor to the roof of the c. 9 km thick Rustenburg Layered Suite (RLS) show essentially the same variations in εHf2·055 Ga from −7·5 to −10·2 as those of metamorphic zircon grains and overgrowths in the immediate surrounding quartzite and metapelitic rocks, as well as in granitic melt batches, granophyres, and the upper Rooiberg volcanics. The same values are also obtained by estimating the average Hf isotopic compositions of detrital zircon grains in many quartzite and metapelitic rocks from the surrounding Magaliesberg (εHf2·055 Ga = −6·2 to −10·8, six samples, maximum deposition age at 2080 Ma) and Houtenbeck formations (εHf2·055 Ga = −7·1 to −8·9, three samples, maximum deposition age at 2070 Ma), and by a six-point isochron of a garnet-schist from the Silverton Formation (εHft = −6·6 ± 0·7; age = 2059·4 ± 2·7 Ma). Zircon morphologies, zoning patterns, Hf isotopic data and petrological constraints furthermore reveal that metamorphic zircon was precipitated from aqueous fluids and/or felsic melts at temperatures between 550 and 900 °C, and that the Hf isotopic composition became homogenized during fluid transport in the contact aureole. However, results of numerical modelling indicate that fluid infiltration had only a minor effect on the Zr–Hf budget and Hf isotopic composition of the RLS, and that these parameters were mainly controlled by the mixing of melts derived from three major sources: (1) the asthenospheric mantle (>20 %); (2) enriched subcontinental lithospheric mantle (<80 %); (3) assimilation of significant amounts of crust (up to 40 %). The modelling furthermore suggests that assimilation of lower Kaapvaal Craton crust was minor (<15 %) during B1 (high-Mg andesite) magma formation, but up to 40 % during B3 (tholeiite) magma formation. The minor variation in εHft of zircon throughout the entire stratigraphy of the RLS resulted from the interplay of three dominant contributing factors: (1) intrusion of hot (>1200 °C) mantle-derived magmas with relatively low Zr–Hf concentrations having a similar εHf2·055 Ga of −8·5 ± 1·9 to that of upper crust rocks surrounding the RLS; (2) significant assimilation of volcanic and metasedimentary rocks with high Zr–Hf concentration; (3) mingling, mixing and/or diffusive exchange of Zr and Hf between crust and mantle-derived melts and aqueous fluids prior to late-magmatic crystallization of zircon at temperatures between 700 and 900 °C. This study shows that the combination of Zr–Hf bulk-rock data with Hf isotopic data of well-characterized zircon grains provides a powerful tool to quantify various mantle and crustal reservoirs of mafic layered intrusions, and allows new insights into magma chamber and related contact metamorphic processes.


Lithos ◽  
2020 ◽  
Vol 352-353 ◽  
pp. 105316 ◽  
Author(s):  
Riccardo Avanzinelli ◽  
Gianluca Bianchini ◽  
Massimo Tiepolo ◽  
Alia Jasim ◽  
Claudio Natali ◽  
...  

Lithos ◽  
2021 ◽  
Vol 382-383 ◽  
pp. 105959
Author(s):  
Om Prakash Pandey ◽  
Klaus Mezger ◽  
Dewashish Upadhyay ◽  
Debajyoti Paul ◽  
Ajay Kumar Singh ◽  
...  

Author(s):  
Mikael Vasilopoulos ◽  
Ferenc Molnár ◽  
Hugh O’Brien ◽  
Yann Lahaye ◽  
Marie Lefèbvre ◽  
...  

AbstractThe Juomasuo Au–Co deposit, currently classified as an orogenic gold deposit with atypical metal association, is located in the Paleoproterozoic Kuusamo belt in northeastern Finland. The volcano-sedimentary sequence that hosts the deposit was intensely altered, deformed, and metamorphosed to greenschist facies during the 1.93–1.76 Ga Svecofennian orogeny. In this study, we investigate the temporal relationship between Co and Au deposition and the relationship of metal enrichment with protolith composition and alteration mineralogy by utilizing lithogeochemical data and petrographic observations. We also investigate the nature of fluids involved in deposit formation based on sulfide trace element and sulfur isotope LA-ICP-MS data together with tourmaline mineral chemistry and boron isotopes. Classification of original protoliths was made on the basis of geochemically immobile elements; recognized lithologies are metasedimentary rocks, mafic, intermediate-composition, and felsic metavolcanic rocks, and an ultramafic sill. The composition of the host rocks does not control the type or intensity of mineralization. Sulfur isotope values (δ34S − 2.6 to + 7.1‰) and trace element data obtained for pyrite, chalcopyrite, and pyrrhotite indicate that the two geochemically distinct Au–Co and Co ore types formed from fluids of different compositions and origins. A reduced, metamorphic fluid was responsible for deposition of the pyrrhotite-dominant, Co-rich ore, whereas a relatively oxidized fluid deposited the pyrite-dominant Au–Co ore. The main alteration and mineralization stages at Juomasuo are as follows: (1) widespread albitization that predates both types of mineralization; (2) stage 1, Co-rich mineralization associated with chlorite (± biotite ± amphibole) alteration; (3) stage 2, Au–Co mineralization related to sericitization. Crystal-chemical compositions for tourmaline suggest the involvement of evaporite-related fluids in formation of the deposit; boron isotope data also allow for this conclusion. Results of our research indicate that the metal association in the Juomasuo Au–Co deposit was formed by spatially coincident and multiple hydrothermal processes.


2003 ◽  
Vol 40 (8) ◽  
pp. 1027-1051 ◽  
Author(s):  
D Canil ◽  
D J Schulze ◽  
D Hall ◽  
B C Hearn Jr. ◽  
S M Milliken

This study presents major and trace element data for 243 mantle garnet xenocrysts from six kimberlites in parts of western North America. The geochemical data for the garnet xenocrysts are used to infer the composition, thickness, and tectonothermal affinity of the mantle lithosphere beneath western Laurentia at the time of kimberlite eruption. The garnets record temperatures between 800 and 1450°C using Ni-in-garnet thermometry and represent mainly lherzolitic mantle lithosphere sampled over an interval from about 110–260 km depth. Garnets with sinuous rare-earth element patterns, high Sr, and high Sc/V occur mainly at shallow depths and occur almost exclusively in kimberlites interpreted to have sampled Archean mantle lithosphere beneath the Wyoming Province in Laurentia, and are notably absent in garnets from kimberlites erupting through the Proterozoic Yavapai Mazatzal and Trans-Hudson provinces. The similarities in depths of equilibration, but differing geochemical patterns in garnets from the Cross kimberlite (southeastern British Columbia) compared to kimberlites in the Wyoming Province argue for post-Archean replacement and (or) modification of mantle beneath the Archean Hearne Province. Convective removal of mantle lithosphere beneath the Archean Hearne Province in a "tectonic vise" during the Proterozoic terminal collisions that formed Laurentia either did not occur, or was followed by replacement of thick mantle lithosphere that was sampled by kimberlite in the Triassic, and is still observed there seismically today.


Sign in / Sign up

Export Citation Format

Share Document