Mesozoic crustal melting and metamorphism in the U.S. Cordilleran hinterland: Insights from the Sawtooth metamorphic complex, central Idaho

Author(s):  
Chong Ma ◽  
David A. Foster ◽  
Paul A. Mueller ◽  
Barbara L. Dutrow ◽  
Jeffery Marsh

In this study, we present whole-rock geochemistry and Sm-Nd data; zircon trace element, U-Pb, and Lu-Hf data; titanite U-Pb dating; and structural analysis of igneous and metasedimentary rocks of the Sawtooth metamorphic complex that provide insight into regional metamorphism, partial melting, and crustal thickening in the Idaho batholith segment of the Cordilleran orogen. Four magmatic events are revealed: (1) pre-tectonic felsic magmatism at ca. 156 Ma, (2) syn-tectonic mafic and felsic magmatism between ca. 100 Ma and ca. 92 Ma, (3) felsic magmatism concurrent with late-stage deformation at ca. 89−84 Ma, and (4) post-tectonic felsic magmatism at ca. 77 Ma. The multiple generations of felsic magmatism include a variety of sedimentary- and igneous-derived granitoids distinguished by zircon trace element compositions (e.g., U/Ce versus Th and Ce/Sm versus Yb/Gd) and were sourced from progressively more evolved crustal components as shown by Lu-Hf and Sm-Nd isotopic data. U-Pb data of metamorphic zircons and titanites from high-grade metasedimentary rocks suggest that regional metamorphism occurred from ca. 100−93 Ma, which was characterized by granulite-facies partial melting and concurrent growth of metamorphic zircons and garnets. The episodic magmatism in the Sawtooth metamorphic complex records pervasive melt migration in a hot, mid-crustal setting at ca. 100‒92 Ma and additional magma ascent in a cool, upper-crustal setting at ca. 77 Ma. The uplift of the Sawtooth metamorphic complex from mid- to upper-crust was likely caused by underthrusting at lower crustal levels coupled with erosion and thinning of the upper crust. This work suggests that the crust of the Cordilleran hinterland in the Idaho batholith region underwent significant thickening from ca. 100‒84 Ma, and a crust of Andean-like thickness was probably achieved by ca. 84 Ma. By ca. 77 Ma, the central Idaho crust started to thin likely due to mid-crustal flow and surface erosion. The new data from the Sawtooth metamorphic complex are consistent with the two major magmatic flare-ups in the Late Jurassic and Late Cretaceous in the U.S. Cordilleran orogen.

2019 ◽  
Vol 60 (7) ◽  
pp. 1299-1348 ◽  
Author(s):  
Claire E Bucholz ◽  
Christopher J Spencer

Abstract Strongly peraluminous granites (SPGs) form through the partial melting of metasedimentary rocks and therefore represent archives of the influence of assimilation of sedimentary rocks on the petrology and chemistry of igneous rocks. With the aim of understanding how variations in sedimentary rock characteristics across the Archean–Proterozoic transition might have influenced the igneous rock record, we compiled and compared whole-rock chemistry, mineral chemistry, and isotope data from Archean and Paleo- to Mesoproterozoic SPGs. This time period was chosen as the Archean–Proterozoic transition broadly coincides with the stabilization of continents, the rise of subaerial weathering, and the Great Oxidation Event (GOE), all of which left an imprint on the sedimentary rock record. Our compilation of SPGs is founded on a detailed literature review of the regional geology, geochronology, and inferred origins of the SPGs, which suggest derivation from metasedimentary source material. Although Archean and Proterozoic SPGs are similar in terms of mineralogy or major-element composition owing to their compositions as near-minimum melts in the peraluminous haplogranite system, we discuss several features of their mineral and whole-rock chemistry. First, we review a previous analysis of Archean and Proterozoic SPGs biotite and whole-rock compositions indicating that Archean SPGs, on average, are more reduced than Proterozoic SPGs. This observation suggests that Proterozoic SPGs were derived from metasedimentary sources that on average had more oxidized bulk redox states relative to their Archean counterparts, which could reflect an increase in atmospheric O2 levels and more oxidized sedimentary source rocks after the GOE. Second, based on an analysis of Al2O3/TiO2 whole-rock ratios and zircon saturation temperatures, we conclude that Archean and Proterozoic SPGs formed through partial melting of metasedimentary rocks over a similar range of melting temperatures, with both ‘high-’ and ‘low-’temperature SPGs being observed across all ages. This observation suggests that the thermo-tectonic processes resulting in the heating and melting of metasedimentary rocks (e.g. crustal thickening or underplating of mafic magmas) occurred during generation of both the Archean and Proterozoic SPGs. Third, bulk-rock CaO/Na2O, Rb/Sr, and Rb/Ba ratios indicate that Archean and Proterozoic SPGs were derived from partial melting of both clay-rich (i.e. pelites) and clay-poor (i.e. greywackes) source regions that are locality specific, but not defined by age. This observation, although based on a relatively limited dataset, indicates that the source regions of Archean and Proterozoic SPGs were similar in terms of sediment maturity (i.e. clay component). Last, existing oxygen isotope data for quartz, zircon, and whole-rocks from Proterozoic SPGs show higher values than those of Archean SPGs, suggesting that bulk sedimentary 18O/16O ratios increased across the Archean–Proterozoic boundary. The existing geochemical datasets for Archean and Proterozoic SPGs, however, are limited in size and further work on these rocks is required. Future work must include detailed field studies, petrology, geochronology, and constraints on sedimentary source ages to fully interpret the chemistry of this uniquely useful suite of granites.


Geology ◽  
2021 ◽  
Author(s):  
Peng Gao ◽  
Chris Yakymchuk ◽  
Jian Zhang ◽  
Changqing Yin ◽  
Jiahui Qian ◽  
...  

Hafnium (Hf) isotopes in zircon are important tracers of granite petrogenesis and continental crust evolution. However, zircon in granites generally shows large Hf isotope variations, and the reasons for this are debated. We applied U-Pb geochronology, trace-element, and Hf isotope analyses of zircon from the Miocene Himalayan granites to address this issue. Autocrystic zircon had εHf values (at 20 Ma) of –12.0 to –4.3 (median = –9). Inherited zircon yielded εHf values (at 20 Ma) of –34.8 to +0.3 (median = –13); the majority of εHf values were lower than those of autocrystic zircon. The εHf values of inherited zircon with high U concentrations resembled those of autocrystic zircon. Geochemical data indicates that the granites were generated during relatively low-temperature (<800 °C) partial melting of metasedimentary rocks, which, coupled with kinetic hindrance, may have led to the preferential dissolution of high-U zircon that could dissolve more efficiently into anatectic melt due to higher amounts of radiation damage. Consequently, Hf values of autocrystic zircon can be biased toward the values of U-rich zircon in the source. By contrast, literature data indicate that granites generated at high temperatures (<820–850 °C) generally contain autocrystic and inherited zircons with comparable Hf isotope values. During higher-temperature melting, indiscriminate dissolution of source zircon until saturation is reached will result in near-complete inheritance of Hf isotope ratios from the source. Our results impose an extra layer of complexity to interpretation of the zircon Hf isotope archive that is not currently considered.


1999 ◽  
Vol 36 (7) ◽  
pp. 1131-1147 ◽  
Author(s):  
Katsuyuki Yamashita ◽  
Robert A Creaser ◽  
James U Stemler ◽  
Tony W Zimaro

New geochemical and Nd-Pb isotopic data for ~ 2.62-2.59 Ga granitoids from the southwest Slave Province are used to determine the source(s) of granitoid magmas, to evaluate the role of pre-2.8 Ga basement during this magmatism, and to refine the existing Nd-Pb isotopic structure of the western Slave Province. The Pb isotopic data require crust older than ~3.2 Ga as a granitoid protolith, whereas the Nd isotopic data require input from juvenile crustal material. This discrepancy is explained if the granitoid protoliths are mixtures of ancient basement and ~2.7 Ga juvenile crust in varying proportions. Specifically, granitoids from the southwestern Slave Province require 10-30% basement, whereas granitoids from other parts of the western Slave Province require >50%. Incorporation of basement as a protolith may be achieved indirectly, by assimilation of basement during juvenile ~2.7 Ga magmatism, or directly during ~2.62-2.59 Ga magmatism. The granitoid isotopic data suggest that indirect basement input was important on a regional scale, but direct input may have also taken place in some areas of the western Slave Province, particularly along the ~111°W "isotopic boundary" zone previously recognized. The geochemical characteristics of these granitoids are compatible with an origin by partial melting of dominantly amphibolite and metasedimentary rocks to produce the ~2.61 Ga and ~2.59 Ga magmatism, respectively; partial melting occurred in response to regional crustal thickening at this time.


The vertical and horizontal distribution of present-day continental deformation is examined to see how tectonic movements may be related to large wavelength perturbations to the temperature and pressure experienced by rocks in the crust. Earthquakes are generally restricted to the upper part of the continental crust. The lower crust is usually aseismic and assumed to be weaker. The uppermost mantle beneath continental regions has minor seismic activity that does not account for much deformation, but probably indicates an important strength contrast between the lower continental crust and the upper mantle. The maximum focal depth of earthquakes in any region appears to be limited by temperature, with most restricted to material colder than 350± 100 °C in the crust and colder than 700± 100 °C in the mantle. At length scales long compared with the thickness of the brittle upper crust, the deformation in regions of continental extension or shortening appears to be continuous, even though, in reality, discontinuous movement on faults occurs. This probably indicates that the deformation is dominated by distributed flow in the ductile portion of the lithosphere and not by the behaviour of the thin brittle upper crust. The distribution of seismicity, elevation contrasts and vertical movements at the surface suggests that there is little spatial separation between the brittle deformation in the upper crust and the ductile deformation below on length scales larger than the lithosphere thickness. For this reason, and because of the short thermal time constant of the crust, long-wavelength perturbations to the thermal regime are more influenced by the behaviour of the lithosphere as a whole than by the precise geometry of deformation in the crust. Large-scale regional metamorphism in zones of shortening may result from the re-establishment of the initial geotherm in thickened crust when the lower part of the lithosphere detaches and falls into the asthenosphere. In regions of extension, an increased geothermal gradient is unlikely to result in regional metamorphism unless magmatic augmentation to the heat supply is important. However, if the stretched region is covered by thick sediments, the basement may experience a small increase in temperature and remain significantly hotter than it would be if there were no sediment cover. While unlikely to account for significant metamorphism, this effect may strongly influence the rheological behaviour of the lithosphere in extending regions. The rapid vertical movements associated with syn- or post-orogenic normal faulting in regions of large-scale crustal thickening are probably at least as important in exhuming mid-crustal metamorphosed rocks, and in disrupting patterns of isograds, as those associated with erosion.


2014 ◽  
Vol 51 (8) ◽  
pp. 750-774 ◽  
Author(s):  
Tsilavo Raharimahefa ◽  
Bruno Lafrance ◽  
Douglas K. Tinkham

New structural and geochronological data are presented for two orogenic events, the Blezardian and Yavapai orogenies, which affected the Paleoproterozoic Southern Province near Sudbury, Ontario, Canada. The Southern Province comprises ca. 2452 Ma metavolcanic rocks and metasedimentary rocks of the Huronian Supergroup, which were deposited along the southern margin of the Archean Superior craton during its evolution from a rifted to passive continental margin. Emplacement of the ca. 2415 Ma Creighton pluton during rifting was followed by its deformation and the development of a penetrative gneissic fabric during the ca. 2415 − ca. 2219 Ma Blezardian Orogeny. New laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS) U–Pb zircon ages of 2343 ± 17 and 2344 ± 47 Ma on two granitic dikes that cut this fabric provide a new minimum age of ca. 2.34 Ga for the Blezardian Orogeny. The Sudbury area was then impacted by a large extraterrestrial bolide at ca. 1.85 Ga and deformed during the Penokean Orogeny. The southern part of the Southern Province was later reworked by regional folding and north-directed thrusting during the younger 1.7 Ga Yavapai Orogeny. The 1744 ± 29 Ma Eden Lake Complex was emplaced and deformed during this event, which produced a strong foliation overprinting the complex. The foliation formed at pressures of 2.8–4 kbar (1 kbar = 100 MPa) and temperatures of 540–565 °C and was intruded by a weakly deformed 1704 ± 13 Ma old granitic dike, bracketing the Yavapai event between 1744 ± 29 and 1704 ± 13 Ma in the Sudbury segment of the Southern Province. Crustal thickening associated with the Yavapai event resulted, locally, in minor pressure increases before or during regional metamorphism as revealed by phase equilibria modeling in the Raft Lake area; this evolution may be recorded elsewhere in the Ontario segment of the Southern Province.


Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


Author(s):  
Mikael Vasilopoulos ◽  
Ferenc Molnár ◽  
Hugh O’Brien ◽  
Yann Lahaye ◽  
Marie Lefèbvre ◽  
...  

AbstractThe Juomasuo Au–Co deposit, currently classified as an orogenic gold deposit with atypical metal association, is located in the Paleoproterozoic Kuusamo belt in northeastern Finland. The volcano-sedimentary sequence that hosts the deposit was intensely altered, deformed, and metamorphosed to greenschist facies during the 1.93–1.76 Ga Svecofennian orogeny. In this study, we investigate the temporal relationship between Co and Au deposition and the relationship of metal enrichment with protolith composition and alteration mineralogy by utilizing lithogeochemical data and petrographic observations. We also investigate the nature of fluids involved in deposit formation based on sulfide trace element and sulfur isotope LA-ICP-MS data together with tourmaline mineral chemistry and boron isotopes. Classification of original protoliths was made on the basis of geochemically immobile elements; recognized lithologies are metasedimentary rocks, mafic, intermediate-composition, and felsic metavolcanic rocks, and an ultramafic sill. The composition of the host rocks does not control the type or intensity of mineralization. Sulfur isotope values (δ34S − 2.6 to + 7.1‰) and trace element data obtained for pyrite, chalcopyrite, and pyrrhotite indicate that the two geochemically distinct Au–Co and Co ore types formed from fluids of different compositions and origins. A reduced, metamorphic fluid was responsible for deposition of the pyrrhotite-dominant, Co-rich ore, whereas a relatively oxidized fluid deposited the pyrite-dominant Au–Co ore. The main alteration and mineralization stages at Juomasuo are as follows: (1) widespread albitization that predates both types of mineralization; (2) stage 1, Co-rich mineralization associated with chlorite (± biotite ± amphibole) alteration; (3) stage 2, Au–Co mineralization related to sericitization. Crystal-chemical compositions for tourmaline suggest the involvement of evaporite-related fluids in formation of the deposit; boron isotope data also allow for this conclusion. Results of our research indicate that the metal association in the Juomasuo Au–Co deposit was formed by spatially coincident and multiple hydrothermal processes.


Sign in / Sign up

Export Citation Format

Share Document