scholarly journals Supplemental Material: A test of the efficacy of sand saltation for silt production: Implications for the interpretation of loess

2020 ◽  
Author(s):  
Steven Adams ◽  
Gerilyn Soreghan

Table S1 (GPS coordinates of sample locations), Table S2 (grain-size distribution data; https://doi.pangaea.de/10.1594/pangaea.914301), Table S3 (point-counting data), Table S4 (automated surface observing stations [ASOS] GPS and wind data), Table S5 (scaling methods and detailed calculation), Table S6 (law of wall calculation and plot), and Table S7 (control sample mass loss).<br>

2020 ◽  
Author(s):  
Steven Adams ◽  
Gerilyn Soreghan

Table S1 (GPS coordinates of sample locations), Table S2 (grain-size distribution data; https://doi.pangaea.de/10.1594/pangaea.914301), Table S3 (point-counting data), Table S4 (automated surface observing stations [ASOS] GPS and wind data), Table S5 (scaling methods and detailed calculation), Table S6 (law of wall calculation and plot), and Table S7 (control sample mass loss).<br>


Author(s):  
O.S. Olaniyan

Sediment transport rate depends on bed composition, flow hydraulics and sediment supply. There is a paucity of information on bedload transport in River Osun. In this study, bedload in River Osun was estimated using grain size distribution data to predict channel migration and mitigate flooding. Grab sampler was used to collect sediment samples at the sampling point across the river designated as T1-T4. Sieve analysis was carried out in triplicate on sediment from sampling points using standard methods. Discharge and cross-sectional area were measured between December 2017 and December 2018 at sampling stations using standard methods. The seasonal and bedload were estimated using standards equations. The percentage of bed material particles above 5mm and less than or equal to 2mm were 50 and 22.49%, respectively. The average median grain (d50) size was 2.4mm. The discharge and cross-sectional area across River Osun ranged (0.53-17.46) m3/s and (3.83-47.46) m2. The seasonal suspended and bedload across the river were (206.43×103 kg/annum) and 2,538.77×103(kg/annum), respectively. The estimated sediment load of River Osun could be useful in determining the dredging period at any point across the river where deposition of sediment could be monitored.


2016 ◽  
Vol 4 (4) ◽  
pp. 773-780 ◽  
Author(s):  
Wenxin Ning ◽  
Jing Tang ◽  
Helena L. Filipsson

Abstract. We analysed the long-term variations in grain-size distribution in sediments from Gåsfjärden, a fjord-like inlet in the southwestern Baltic Sea, and explored potential drivers of the recorded changes in the sediment grain-size data. Over the last 5.4 thousand years (ky) in the study region, the relative sea level decreased 17 m, which was caused by isostatic land uplift. As a consequence, Gåsfjärden was transformed from an open coastal setting to a semi-closed inlet surrounded by numerous small islands on the seaward side. To quantitatively estimate the morphological changes in Gåsfjärden over the investigated time period and to further link the changes to the grain-size distribution data, a digital elevation model (DEM)-based openness index was calculated. The largest values of the openness indices were found between 5.4 and 4.4 cal ka BP, which indicates relatively high bottom water energy. During the same period, the highest sand content (∼  0.4 %) and silt / clay ratio ( ∼  0.3) in the sediment sequence were also recorded. After 4.4 cal ka BP, the average sand content was halved to ∼  0.2 % and the silt / clay ratio showed a significant decreasing trend over the last 4 ky. These changes were found to be associated with the gradual embayment of Gåsfjärden, as represented by the openness indices. The silt  /  clay ratios exhibited a delayed and relatively slower change compared with the sand content, which indicates different grain-size sediment responses to the changes in hydrodynamic energy. Our DEM-based coastal openness indices have proved to be a useful tool for interpreting the temporal dynamics of sedimentary grain size.


1970 ◽  
Vol 2 (2) ◽  
pp. K69-K73 ◽  
Author(s):  
M. Reinbold ◽  
H. Hoffmann

Sign in / Sign up

Export Citation Format

Share Document