scholarly journals Tectonostratigraphic record of late Miocene–early Pliocene transtensional faulting in the Eastern California shear zone, southwestern USA

Geosphere ◽  
2021 ◽  
Author(s):  
Rebecca J. Dorsey ◽  
Brennan O’Connell ◽  
Kevin K. Gardner ◽  
Mindy B. Homan ◽  
Scott E.K. Bennett ◽  
...  

The Eastern California shear zone (ECSZ; southwestern USA) accommodates ~20%–25% of Pacific–North America relative plate motion east of the San Andreas fault, yet little is known about its early tectonic evolution. This paper presents a detailed stratigraphic and structural analysis of the uppermost Miocene to lower Pliocene Bouse Formation in the southern Blythe Basin, lower Colorado River valley, where gently dipping and faulted strata provide a record of deformation in the paleo-ECSZ. In the western Trigo Mountains, splaying strands of the Lost Trigo fault zone include a west-dipping normal fault that cuts the Bouse Formation and a steeply NE-dipping oblique dextral-normal fault where an anomalously thick (~140 m) section of Bouse Formation siliciclastic deposits filled a local fault-controlled depocenter. Systematic basinward thickening and stratal wedge geometries in the western Trigo and southeastern Palo Verde Mountains, on opposite sides of the Colorado River valley, record basinward tilting during deposition of the Bouse Formation. We conclude that the southern Blythe Basin formed as a broad transtensional sag basin in a diffuse releasing stepover between the dextral Laguna fault system in the south and the Cibola and Big Maria fault zones in the north. A palinspastic reconstruction at 5 Ma shows that the southern Blythe Basin was part of a diffuse regional network of linked right-step­ping dextral, normal, and oblique-slip faults related to Pacific–North America plate boundary dextral shear. Diffuse transtensional strain linked northward to the Stateline fault system, eastern Garlock fault, and Walker Lane, and southward to the Gulf of California shear zone, which initiated ca. 7–9 Ma, implying a similar age of inception for the paleo-ECSZ.

2021 ◽  
Author(s):  
Rebecca Dorsey ◽  
Juan Carlos Braga Alarcón ◽  
Kevin Gardner ◽  
Brennan O'Connell

Marine straits and seaways are known to host a wide range of sedimentary processes and products, but the role of marine connections in the development of large river systems remains little studied. This study explores a hypothesis that shallow marine waters flooded the lower Colorado River valley at ~ 5 Ma along a fault-controlled former tidal straight, soon after the river was first integrated to the northern Gulf of California. The upper bioclastic member of the southern Bouse Formation provides a critical test of this hypothesis. The upper bioclastic member contains wave ripple-laminated bioclastic grainstone with minor red mudstone, pebbly grainstone with HCS-like stratification and symmetrical gravelly ripples, and calcareous-matrix conglomerate. Fossils include upward-branching segmented coralline-like red algae with no known modern relatives but confirmed as marine calcareous algae, echinoid spines, barnacles, shallow marine foraminifers, clams, and serpulid worm tubes. These results provide evidence for deposition in a shallow marine bay or estuary seaward of the transgressive backstepping Colorado River delta. Tsunamis generated by seismic and meteorologic sources likely produced the HCS-like and wave-ripple cross-bedding in poorly-sorted gravelly grainstone. Marine waters inundated a former tidal strait within a fault-bounded tectonic lowland that connected the lower Colorado River to the Gulf of California. Delta backstepping and transgression resulted from a decrease in sediment output due to sediment trapping in upstream basins and relative sea-level rise produced by regional tectonic subsidence.


Geosphere ◽  
2013 ◽  
Vol 9 (3) ◽  
pp. 444-459 ◽  
Author(s):  
Jon E. Spencer ◽  
P. Jonathan Patchett ◽  
Philip A. Pearthree ◽  
P. Kyle House ◽  
Andrei M. Sarna-Wojcicki ◽  
...  

1955 ◽  
Vol 20 (4Part1) ◽  
pp. 367-374 ◽  
Author(s):  
Paul H. Ezell

The area dealt with in this report is that portion of northwestern Sonora and southwestern Arizona bounded on the southwest by the Gulf of California, on the west by the Colorado River valley below the junction of the Gila River, on the north by the Gila River valley, and on the east by an imaginary line from the vicinity of Gila Bend south along the western edge of the Papago Reservation and thence southwest to the mouth of the Sonoyta River on the Gulf of California (Fig. 106). Within this area Sauer has suggested a boundary between the Piman-speaking people of southern Arizona and northern Sonora, and the Yuman-speaking tribes of the lower Colorado and Gila River valleys, based on linguistic affiliations described in early historical sources (Sauer 1934, map). On archaeological evidence Gifford has suggested that the locality between Punta La Cholla and the mouth of the Sonoyta River represented a point on an ethnic boundary (Gifford 1946: 221).


1999 ◽  
Vol 36 (3) ◽  
pp. 479-494 ◽  
Author(s):  
Martin de Keijzer ◽  
Paul F Williams ◽  
Richard L Brown

The Teslin zone in south-central Yukon has previously been described as a discrete zone with a steep foliation unique to the zone. It includes the Anvil assemblage and the narrowest portion of the Yukon-Tanana terrane (the Nisutlin assemblage), and is defined by post-accretionary faults: the Big Salmon fault to the west and the d'Abbadie fault system to the east. The zone was interpreted as a lithospheric suture or a crustal-scale transpression zone, and as the root zone of klippen lying on the North American craton to the east. We demonstrate that deformation and metamorphism are the same inside and outside the zone. The steep transposition foliation in the zone, in contrast to adjacent rocks to the east, coincides with the steep limb of a regional F3 structure. This fold has a shallow limb in the easternmost part of the zone and immediately east of the zone. Thus we reject earlier interpretations. If a suture exists between the obducted Anvil and Yukon-Tanana Nisutlin assemblages and North America, it is a shear zone that occurs at the base of the obducted rocks, which has been folded by the F3 fold. However, evidence that this thrust boundary is a lithospheric suture is lacking. A consequence of our interpretation is that North American rocks pass under the eastern Teslin zone and outcrop to the west of the Nisutlin and Anvil assemblages. This geometry precludes the possibility of the Teslin zone being the root zone of the klippen.


Geology ◽  
2001 ◽  
Vol 29 (5) ◽  
pp. 459 ◽  
Author(s):  
Michael Oskin ◽  
Joann Stock ◽  
Arturo Martín-Barajas

1942 ◽  
Vol 7 (4) ◽  
pp. 397-398
Author(s):  
Malcolm F. Farmer

A recent paper by Neil M. Judd in the Swanton Anniversary Volume, Essays in Historical Anthropology of North America revives an idea that should be corrected. This has to do with what has been done and what is being done concerning the archaeology of the Colorado River Valley and adjacent desert areas of western Arizona and southeastern California. Judd writes on page 434: “Although this region has long been inhabited by Yuman and Mohave groups, it is still terra incognita to archaeologists.” He mentions the woric of the Gladwins, of Hargrave, and of Cotton but fails to make any reference to other important papers that contain material on the region. Some of these are listed in the brief bibliography accompanying this note.


2020 ◽  
Author(s):  
J. Lee ◽  
et al.

Figure 2. Layer A. Shaded relief map showing major Quaternary faults in central Walker Lane, Mina deflection, northern Eastern California shear zone, and western Basin and Range Province. Heavy black arrow in the northwest corner of the map shows the present-day azimuth of motion of the Sierra Nevada block with respect to the central Great Basin (SN-CBG) (Bennett et al., 2003). Fault abbreviations: APHF—Agai Pah Hills fault; BSF—Benton Spring fault; CF—Coaldale fault; CVF—Clayton Valley fault; EIFZ—Eastern Inyo fault zone; EPF—Emigrant Peak fault; FLVFCDV—Fish Lake Valley–Furnace Creek–Death Valley fault zone; GHF—Gumdrop Hills fault; HLF—Honey Lake fault; HMF—Hunter Mountain fault; IHF—Indian Head fault; MVF—Mohawk Valley fault; OF—Olinghouse fault; OVF—Owens Valley fault; PLF—Pyramid Lake fault; PSF—Petrified Spring fault; PVF—Panamint Valley fault; QVF—Queen Valley fault; SLF—Stateline fault; SNFF—Sierra Nevada frontal fault zone; WMF—White Mountains fault zone; WRF—Wassuk Range fault; WSF—Warm Springs fault. Layer B. Geographic names. Layer C. Tectonic domains. Semi-transparent brown shows the Walker Lane–northern Eastern California shear zone. Layer D. Yellow dashed polygon shows the location of the Gabbs Valley–Gillis Ranges (GVGR) field area (see Fig. 3). Layer E. Yellow stars show the locations of documented middle Miocene fault-slip initiation age. Numbers in the stars are tied to numbers in Table 3. Layer F. Thin blue arrows show GPS velocities relative to stable North America (ITRFNA2005 reference frame) from Lifton et al. (2013), and heavy multi-colored arrows show GPS velocities relative to stable North America (NA12 North America reference frame) from Bormann et al. (2016). GPS velocity scales are in the upper right corner of the map. Maps, labels, and data sets for this figure are organized in a series of layers that may be viewed separately or in combination using the capabilities of the Acrobat (PDF) layering function (click “Layers” icon along vertical bar on left side of window for display of available layers; turn layers on or off by clicking the box that encompasses the layer label located within the gray box in the lower left corner of the map).


2020 ◽  
Author(s):  
J. Lee ◽  
et al.

Figure 2. Layer A. Shaded relief map showing major Quaternary faults in central Walker Lane, Mina deflection, northern Eastern California shear zone, and western Basin and Range Province. Heavy black arrow in the northwest corner of the map shows the present-day azimuth of motion of the Sierra Nevada block with respect to the central Great Basin (SN-CBG) (Bennett et al., 2003). Fault abbreviations: APHF—Agai Pah Hills fault; BSF—Benton Spring fault; CF—Coaldale fault; CVF—Clayton Valley fault; EIFZ—Eastern Inyo fault zone; EPF—Emigrant Peak fault; FLVFCDV—Fish Lake Valley–Furnace Creek–Death Valley fault zone; GHF—Gumdrop Hills fault; HLF—Honey Lake fault; HMF—Hunter Mountain fault; IHF—Indian Head fault; MVF—Mohawk Valley fault; OF—Olinghouse fault; OVF—Owens Valley fault; PLF—Pyramid Lake fault; PSF—Petrified Spring fault; PVF—Panamint Valley fault; QVF—Queen Valley fault; SLF—Stateline fault; SNFF—Sierra Nevada frontal fault zone; WMF—White Mountains fault zone; WRF—Wassuk Range fault; WSF—Warm Springs fault. Layer B. Geographic names. Layer C. Tectonic domains. Semi-transparent brown shows the Walker Lane–northern Eastern California shear zone. Layer D. Yellow dashed polygon shows the location of the Gabbs Valley–Gillis Ranges (GVGR) field area (see Fig. 3). Layer E. Yellow stars show the locations of documented middle Miocene fault-slip initiation age. Numbers in the stars are tied to numbers in Table 3. Layer F. Thin blue arrows show GPS velocities relative to stable North America (ITRFNA2005 reference frame) from Lifton et al. (2013), and heavy multi-colored arrows show GPS velocities relative to stable North America (NA12 North America reference frame) from Bormann et al. (2016). GPS velocity scales are in the upper right corner of the map. Maps, labels, and data sets for this figure are organized in a series of layers that may be viewed separately or in combination using the capabilities of the Acrobat (PDF) layering function (click “Layers” icon along vertical bar on left side of window for display of available layers; turn layers on or off by clicking the box that encompasses the layer label located within the gray box in the lower left corner of the map).


Sign in / Sign up

Export Citation Format

Share Document