scholarly journals Supplemental Material: Apatite fingerprints on the magmatic-hydrothermal evolution of the Daheishan giant porphyry Mo deposit, NE China

Author(s):  
Pan Qu ◽  
Wubin Yang

Figure S1: Harker diagrams illustrating major elemental variations of the porphyry and wall rock. QGP—Qiancuoluo granodioritic porphyry; QBG—Qiancuoluo biotite granodiorite; Figure S2: (a) Chondrite-normalized REE patterns and (b) primitive mantle (PM)-normalized spider diagrams of the porphyry and wall rock. Normalizing values are taken from S. Sun and McDonough (1989); Table S1: Whole-rock major and trace element compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG) granites; Table S2: Whole-rock Sr-Nd compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S3: Apatite major and trace elements (ppm) of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S4: Apatite Sr and Nd isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S5: Apatite U-Pb isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG).

2021 ◽  
Author(s):  
Pan Qu ◽  
Wubin Yang

Figure S1: Harker diagrams illustrating major elemental variations of the porphyry and wall rock. QGP—Qiancuoluo granodioritic porphyry; QBG—Qiancuoluo biotite granodiorite; Figure S2: (a) Chondrite-normalized REE patterns and (b) primitive mantle (PM)-normalized spider diagrams of the porphyry and wall rock. Normalizing values are taken from S. Sun and McDonough (1989); Table S1: Whole-rock major and trace element compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG) granites; Table S2: Whole-rock Sr-Nd compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S3: Apatite major and trace elements (ppm) of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S4: Apatite Sr and Nd isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S5: Apatite U-Pb isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG).


2018 ◽  
Vol 156 (5) ◽  
pp. 833-848 ◽  
Author(s):  
R. M. MOUMBLOW ◽  
G. A. ARCURI ◽  
A. P. DICKIN ◽  
C. F. GOWER

AbstractThe Makkovik Province of eastern Labrador represents part of an accretionary orogen active during an early stage in the development of the Palaeoproterozoic southern Laurentian continental margin. New Nd isotope data for the eastern Makkovik Province suggest that accreted juvenile Makkovik crust was generated in the Cape Harrison domain during a single crust-forming event at c. 2.0 Ga. Pb isotope data support this model, and show a strong similarity to radiogenic crustal signatures in the juvenile Palaeoproterozoic crust of the Ketilidian mobile belt of southern Greenland. As previously proposed, an arc accretion event at c. 1.9 Ga triggered subduction-zone reversal and the development of an ensialic arc on the composite margin. After the subduction flip, a temporary release of compressive stress at c. 1.87 Ga led to the development of a retro-arc foreland basin on the downloaded Archean continental edge, forming the Aillik Group. Unlike previous models, a second arc is not envisaged. Instead, a compressive regime at c. 1.82 Ga is attributed to continued ensialic arc plutonism on the existing margin. The tectonic model for the Makkovikian orogeny proposed here is similar to that for the Ketilidian orogeny. Major- and trace-element analyses suggest that much of the magmatism in the Makkovik orogen results from post-accretionary ensialic arc activity, and that few vestiges remain of the original accreted volcanic arc. This pattern of arc accretion and intense post-accretion reworking is common to many accretionary orogens, such as the South American Andes and North American Cordillera.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 915-938 ◽  
Author(s):  
I. V. Ashchepkov ◽  
N. V. Alymova ◽  
A. M. Logvinova ◽  
N. V. Vladykin ◽  
S. S. Kuligin ◽  
...  

Abstract. Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5–7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1–10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10–100)/PM with La / Ybn ~ 10–25, similar to those derived from kimberlites, with high-field-strength elements (HFSE) peaks (typical megacrysts). A series of similar patterns results from polybaric Assimilation + fractional crystallization (AFC) crystallization of protokimberlite melts which also precipitated sulfides (Pb < 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high-Cr content (group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr-rich ilmenites are typical of veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. Ilmenites which have the highest trace element contents (1000/PM) have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet–spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn–Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.


2012 ◽  
Vol 442 (1) ◽  
pp. 70-75
Author(s):  
I. E. Arkhireev ◽  
E. P. Makagonov ◽  
B. V. Belyatskii ◽  
V. V. Maslennikov

Author(s):  
Pan Qu ◽  
Wubin Yang ◽  
Hecai Niu ◽  
Ningbo Li ◽  
Dan Wu

Porphyry deposits are the main source for global Cu and Mo production. The generation of hydrous silicate magmas and subsequent separation of volatile-rich magmatic fluids with hydrothermal alteration are significant processes leading to the formation of porphyry deposits. However, a specific understanding of these processes has been limited by a lack of direct mineralogical records in the evolving magmatic-hydrothermal system. In this paper, we present an integrated textural and geochemical investigation on apatite from the giant Daheishan porphyry Mo deposit in NE China, illustrating that apatite can be a potential recorder of the magmatic-hydrothermal evolution of porphyry systems. Apatite from the ore-forming porphyry displays distinctive core-rim textures, with melt inclusions in the resorption cores (Type-A1) and co-existing of melt and fluid inclusions in the euhedral rims (Type-A2), indicating a magmatic-hydrothermal origin of apatite. This is also supported by both chemical and isotopic compositions obtained by in situ analyses using laser ablation−inductively coupled plasma−mass spectrometry (LA-ICP-MS) and LA-multi collector-ICP-MS. The late Type-A2 apatite is relatively enriched in incompatible elements, such as rare earth elements (REE) and Th, but slightly depleted in fluid-mobile elements such as Na and S, compared to the early Type-A1 apatite. Relatively homogeneous (87Sr/86Sr)i ratios (0.70436−0.70504) of the Type-A1 and Type-A2 apatites indicate that they were formed in a relatively closed system without detectable contamination. Meanwhile, some apatite in the wall rock (biotite granodiorite) shows characteristics of secondary altered textures, resulting from the intensive alteration by hydrothermal fluids exsolved from the porphyry system. Apatite trapped in mineral phenocrysts of the wall rock is usually unaltered (Type-B1 apatite), with clear oscillatory growth zones in cathodoluminescence (CL) images. In contrast, the intergranular apatite is commonly altered (Type-B2 apatite), with chaotic zoning in CL images, abundant micro-fractures and secondary fluid inclusions. Compositionally, the Type-B2 apatite shows notable tetrad REE patterns, relatively lower light-REE and S contents, and elevated 147Sm/144Nd ratios compared to the Type-B1 apatite. LA-ICP-MS U-Pb dating yields a lower intercept age of 171.4 ± 2.3 Ma for Type-B2, which is consistent with the age of 171.5 ± 2.4 Ma for Type-A2, but is notably younger than the Type-B1 apatite (175.5 ± 1.3 Ma). It is suggested that the Type-B2 apatite has been significantly reset by hydrothermal fluids exsolved from the porphyry system. Therefore, we conclude that the textures and geochemistry of apatite in porphyry systems can be used as a potential proxy for recording fluid exsolution and hydrothermal alteration processes.


2019 ◽  
Vol 64 (4) ◽  
pp. 395-408
Author(s):  
V. B. Naumov ◽  
V. A. Dorofeeva ◽  
A. V. Girnis ◽  
V. V. Yarmolyuk

As a continuation of our previous study, we estimated the mean contents of volatile, major, and trace components in silicic (>66 wt % SiO2) magmatic melts from main terrestrial geodynamic settings on the basis of our database, which includes (as of middle 2017) more than 1 500 000 determination of 75 elements in melt inclusions and quench glasses from rocks. Among the geodynamic settings are those related to subduction processes (III, island-arc zones originated on oceanic crust and IV, magmatic zones of active continental margins, where continental crust is involved in magma formation) and intracontinent rift and continental hot-spot regions (V). For each geodynamic setting, we calculated the mean contents of elements with confidence limits separately for melt inclusions and groundmass glasses and for the entire data set. Systematic differences were found between the mean compositions of melt inclusions and groundmass glasses from these geodynamic settings. Primitive mantle normalized spider diagrams were constructed for all geodynamic settings. Some ratios of elements and volatile components (H2O/Ce, K2O/Cl, La/Yb, Nb/U, Ba/Rb, Ce/ Pb, etc.) in silicic and mafic melts were compared. Variations in the ratios of various elements to Th, which is one of the most incompatible elements in silicic and mafic melts, were discussed.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 326
Author(s):  
Tae-Hyeon Kim ◽  
Seung-Gu Lee ◽  
Jae-Young Yu

Carbonate formations of the Cambro-Ordovician Period occur in the Taebaek and Jeongseon areas, located in the central–eastern part of the Korean Peninsula. This study analyzed the rare earth element (REE) contents and Sr–Nd isotope ratios in these carbonates to elucidate their depositional environment and diagenetic history. The CI chondrite-normalized REE patterns of the carbonates showed negative Eu anomalies (EuN/(SmN × GdN)1/2 = 0.50 to 0.81), but no Ce anomaly (Ce/Ce* = CeN/(LaN2 × NdN)1/3 = 1.01 ± 0.06). The plot of log (Ce/Ce*) against sea water depth indicates that the carbonates were deposited in a shallow-marine environment such as a platform margin. The 87Sr/86Sr ratios in both Taebaek and Jeongseon carbonates were higher than those in the seawater at the corresponding geological time. The 87Sr/86Sr ratios and the values of (La/Yb)N and (La/Sm)N suggest that the carbonates in the areas experienced diagenetic processes several times. Their 143Nd/144Nd ratios varied from 0.511841 to 0.511980. The low εNd values and high 87Sr/86Sr ratios in the carbonates may have resulted from the interaction with the hydrothermal fluid derived from the intrusive granite during the Cretaceous Period.


Author(s):  
Kai Xing ◽  
Qihai Shu ◽  
David R Lentz

Abstract There are more than 90 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in the early Cretaceous. The Jurassic Daheishan porphyry Mo deposit is one of the largest Mo deposits in NE China, which contains 1.09 Mt Mo with an average Mo grade of 0.07%. To better understand the factors that could have controlled Mo mineralization at Daheishan, and potentially in other similar porphyry Mo deposits in NE China, the geochemical and isotopic compositions of the ore-related granite porphyry and biotite granodiorite, and the magmatic accessory minerals apatite, titanite and zircon from the Daheishan intrusions, were investigated so as to evaluate the potential roles that magma oxidation states, water contents, sulfur and metal concentrations could have played in the formation of the deposit. Magmatic apatite and titanite from the causative intrusions show similar εNd(t) values from -1.1 to 1.4, corresponding to TDM2 ages ranging from 1040 to 840 Ma, which could be accounted for by a mixing model through the interaction of mantle-derived basaltic melts with the Precambrian lower crust. The Ce and Eu anomalies of the magmatic accessory minerals have been used as proxies for magma redox state, and the results suggest that the ore-forming magmas are highly oxidized, with an estimated ΔFMQ range of + 1.8 to + 4.1 (+2.7 in average). This is also consistent with the high whole-rock Fe2O3/FeO ratios (1.3–26.4). The Daheishan intrusions display negligible Eu anomalies (Eu/Eu* = 0.7–1.1) and have relatively high Sr/Y ratios (40–94) with adakitic signatures; they also have relatively high Sr/Y ratios in apatite and titanite. These suggest that the fractionation of amphibole rather than plagioclase is dominant during the crystallization of the ore-related magmas, which further indicates a high magmatic water content (e.g., &gt;5 wt%). The magmatic sulfur concentrations were calculated using available partitioning models for apatite from granitoids, and the results (9–125 ppm) are indistinguishable from other mineralized, subeconomic and barren intrusions. Furthermore, Monte Carlo modelling has been conducted to simulate the magmatic processes associated with the formation of the Daheishan Mo deposit, and the result reveals that a magma volume of ∼280 km3 with ∼10 ppm Mo was required to form the Mo ores containing 1.09 Mt Mo in Daheishan. The present study suggests that a relatively large volume of parental magmas with high oxygen fugacities and high water contents is essential for the generation of a giant porphyry Mo deposit like Daheishan, whereas a specific magma composition (e.g., with unusually high Mo and/or S concentrations), might be less critical.


2018 ◽  
Vol 481 (1) ◽  
pp. 277-298 ◽  
Author(s):  
Masatsugu Ogasawara ◽  
Mayuko Fukuyama ◽  
Rehanul Haq Siddiqui ◽  
Ye Zhao

AbstractThe Mansehra granite in the NW Himalaya is a typical Lesser Himalayan granite. We present here new whole-rock geochemistry, Rb–Sr and Sm–Nd isotope data, together with zircon U–Pb ages and Hf isotope data, for the Mansehra granite. Geochemical data for the granite show typical S-type characteristics. Zircon U–Pb dating yields 206Pb/238U crystallization ages of 483–476 Ma. The zircon grains contain abundant inherited cores and some of these show a clear detrital origin. The 206Pb/238U ages of the inherited cores in the granite cluster in the ranges 889–664, 1862–1595 and 2029 Ma. An age of 664 Ma is considered to be the maximum age of the sedimentary protoliths. Thus the Late Neoproterozoic to Cambrian sedimentary rocks must be the protolith of the Mansehra granitic magma. The initial Sr isotope ratios are high, ranging from 0.7324 to 0.7444, whereas the εNd(t) values range from −9.2 to −8.6, which strongly suggests a large contribution of old crustal material to the protoliths. The two-stage Nd model ages and zircon Hf model ages are Paleoproterozoic, indicating that the protolith sediments were derived from Paleoproterozoic crustal components.


Sign in / Sign up

Export Citation Format

Share Document