scholarly journals Mean contents of volatile components, major and trace elements in magmatic melts from main geodynamic settings of the earth. II. Silicic melts

2019 ◽  
Vol 64 (4) ◽  
pp. 395-408
Author(s):  
V. B. Naumov ◽  
V. A. Dorofeeva ◽  
A. V. Girnis ◽  
V. V. Yarmolyuk

As a continuation of our previous study, we estimated the mean contents of volatile, major, and trace components in silicic (>66 wt % SiO2) magmatic melts from main terrestrial geodynamic settings on the basis of our database, which includes (as of middle 2017) more than 1 500 000 determination of 75 elements in melt inclusions and quench glasses from rocks. Among the geodynamic settings are those related to subduction processes (III, island-arc zones originated on oceanic crust and IV, magmatic zones of active continental margins, where continental crust is involved in magma formation) and intracontinent rift and continental hot-spot regions (V). For each geodynamic setting, we calculated the mean contents of elements with confidence limits separately for melt inclusions and groundmass glasses and for the entire data set. Systematic differences were found between the mean compositions of melt inclusions and groundmass glasses from these geodynamic settings. Primitive mantle normalized spider diagrams were constructed for all geodynamic settings. Some ratios of elements and volatile components (H2O/Ce, K2O/Cl, La/Yb, Nb/U, Ba/Rb, Ce/ Pb, etc.) in silicic and mafic melts were compared. Variations in the ratios of various elements to Th, which is one of the most incompatible elements in silicic and mafic melts, were discussed.

2021 ◽  
Author(s):  
Pan Qu ◽  
Wubin Yang

Figure S1: Harker diagrams illustrating major elemental variations of the porphyry and wall rock. QGP—Qiancuoluo granodioritic porphyry; QBG—Qiancuoluo biotite granodiorite; Figure S2: (a) Chondrite-normalized REE patterns and (b) primitive mantle (PM)-normalized spider diagrams of the porphyry and wall rock. Normalizing values are taken from S. Sun and McDonough (1989); Table S1: Whole-rock major and trace element compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG) granites; Table S2: Whole-rock Sr-Nd compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S3: Apatite major and trace elements (ppm) of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S4: Apatite Sr and Nd isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S5: Apatite U-Pb isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG).


2021 ◽  
Author(s):  
Pan Qu ◽  
Wubin Yang

Figure S1: Harker diagrams illustrating major elemental variations of the porphyry and wall rock. QGP—Qiancuoluo granodioritic porphyry; QBG—Qiancuoluo biotite granodiorite; Figure S2: (a) Chondrite-normalized REE patterns and (b) primitive mantle (PM)-normalized spider diagrams of the porphyry and wall rock. Normalizing values are taken from S. Sun and McDonough (1989); Table S1: Whole-rock major and trace element compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG) granites; Table S2: Whole-rock Sr-Nd compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S3: Apatite major and trace elements (ppm) of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S4: Apatite Sr and Nd isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S5: Apatite U-Pb isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG).


2007 ◽  
Vol 144 (5) ◽  
pp. 867-882 ◽  
Author(s):  
MUSA ALPASLAN

Continental basalts ranging in age from 16.5 to 19.08 Ma crop out throughout the northern part of the Arabian plate. The basalts have distinctive petrographic characteristics such as rounded and skeletal olivine phenocrysts with abundant melt inclusions, implying the mixing of two distinct magmas. All of the analysed basalts are tholeiitic in composition. The presence of quartz xenocrysts with clinopyroxene rims in some samples indicates that crustal assimilation was probably an important process during magma ascent to the surface, and low Mg number and high SiO2 contents of the basalts clearly show that they have experienced fractional crystallization as well as crustal contamination. Variations of the major and trace elements versus MgO show that olivine+clinopyroxene+plagioclase were the main fractionating minerals. In terms of incompatible trace elements, the basalts have OIB-like signatures with a slight depletion at Nb–Ta on primitive-mantle-normalized diagrams. The basalts have slightly LREE enriched patterns with La/YbN = 5.5 to 6.7. La/Nb ratios are close to unity, suggesting the melts may have originated in the asthenospheric mantle. Partial melting modelling based on REE data imply that the melts were not produced from a single mantle source depth, which is either purely a spinel- or garnet-peridotite end member. The samples lie on a binary mixing line between low-degree melts (<5%) from garnet-peridotite and higher-degree melts (>10%) from spinel-peridotite sources on a plot of La/Yb v. Dy/Yb, requiring interaction of melts derived from both garnet- and spinel-peridotite fields. Melts originating from both sources were initially tapped by distinct magma chambers, which subsequently hybridized into a single flow. Hybridized magma ascended to the surface along Neogene strike-slip faults, which are linked to the Dead Sea Fault Zone.


Author(s):  
F. Humbert ◽  
A. Hofmann ◽  
M. de Kock ◽  
A. Agangi ◽  
Y-M. Chou ◽  
...  

Abstract: The ca. 2.97 to 2.80 Ga Witwatersrand Supergroup, South Africa, represents the oldest intracontinental sedimentary basin of the Kaapvaal craton. Two volcanic units occur in this supergroup: the widespread Crown Formation lavas in the marine shale-dominated West Rand Group and the more geographically restricted Bird Member lavas, intercalated with fluvial to fluvio-deltaic sandstone and conglomerate of the Central Rand Group. These units remain poorly studied as they are rarely exposed and generally deeply weathered when cropping out. We report whole-rock major and trace elements, Hf and Nd-isotope whole-rock analyses of the lavas from core samples drilled in the south of the Witwatersrand basin and underground samples from the Evander Goldfield in the northeast. In the studied areas, both the Crown Formation and Bird Member are composed of two units of lava separated by sandstone. Whereas all the Crown Formation samples show a similar geochemical composition, the upper and lower volcanic units of the Bird Member present clear differences. However, the primitive mantle-normalized incompatible trace element concentrations of all Crown Formation and Bird Member samples show variously enriched patterns and marked negative Nb and Ta anomalies relative to Th and La. Despite the convergent geodynamic setting of the Witwatersrand Supergroup suggested by the literature, the Crown Formation and Bird Member are probably not related to subduction-related magmatism but more to decompression melting. Overall, the combined trace element and Sm-Nd isotopic data indicate melts from slightly to moderately depleted sources that were variably contaminated with crustal material. Greater contamination, followed by differentiation in different magma chambers, can explain the difference between the two signatures of the Bird Member. Finally, despite previous proposals for stratigraphically correlating the Witwatersrand Supergroup to the Mozaan Group of the Pongola Supergroup, their volcanic units are overall geochemically distinct.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Chao Xiong ◽  
Claudia Stolle ◽  
Patrick Alken ◽  
Jan Rauberg

Abstract In this study, we have derived field-aligned currents (FACs) from magnetometers onboard the Defense Meteorological Satellite Project (DMSP) satellites. The magnetic latitude versus local time distribution of FACs from DMSP shows comparable dependences with previous findings on the intensity and orientation of interplanetary magnetic field (IMF) By and Bz components, which confirms the reliability of DMSP FAC data set. With simultaneous measurements of precipitating particles from DMSP, we further investigate the relation between large-scale FACs and precipitating particles. Our result shows that precipitation electron and ion fluxes both increase in magnitude and extend to lower latitude for enhanced southward IMF Bz, which is similar to the behavior of FACs. Under weak northward and southward Bz conditions, the locations of the R2 current maxima, at both dusk and dawn sides and in both hemispheres, are found to be close to the maxima of the particle energy fluxes; while for the same IMF conditions, R1 currents are displaced further to the respective particle flux peaks. Largest displacement (about 3.5°) is found between the downward R1 current and ion flux peak at the dawn side. Our results suggest that there exists systematic differences in locations of electron/ion precipitation and large-scale upward/downward FACs. As outlined by the statistical mean of these two parameters, the FAC peaks enclose the particle energy flux peaks in an auroral band at both dusk and dawn sides. Our comparisons also found that particle precipitation at dawn and dusk and in both hemispheres maximizes near the mean R2 current peaks. The particle precipitation flux maxima closer to the R1 current peaks are lower in magnitude. This is opposite to the known feature that R1 currents are on average stronger than R2 currents.


2021 ◽  
pp. 112972982110154
Author(s):  
Raffaella Mauro ◽  
Cristina Rocchi ◽  
Francesco Vasuri ◽  
Alessia Pini ◽  
Anna Laura Croci Chiocchini ◽  
...  

Background: Arteriovenous fistula (AVF) for hemodialysis integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes. Aim of this study is to determine the role of Ki67, a well-established proliferative marker, related to AVF, and its relationship with time-dependent histological morphologic changes. Materials and methods: All patients were enrolled in 1 year and stratified in two groups: (A) pre-dialysis patients submitted to first AVF and (B) patients submitted to revision of AVF. Morphological changes: neo-angiogenesis (NAG), myointimal thickening (MIT), inflammatory infiltrate (IT), and aneurysmatic fistula degeneration (AD). The time of AVF creation was recorded. A biopsy of native vein in Group A and of arterialized vein in Group B was submitted to histological and immunohistochemical (IHC) analysis. IHC for Ki67 was automatically performed in all specimens. Ki67 immunoreactivity was assessed as the mean number of positive cells on several high-power fields, counted in the hot spots. Results: A total of 138 patients were enrolled, 69 (50.0%) Group A and 69 (50.0%) Group B. No NAG or MIT were found in Group A. Seven (10.1%) Group A veins showed a mild MIT. Analyzing the Group B, a moderate-to-severe MIT was present in 35 (50.7%), IT in 19 (27.5%), NAG in 37 (53.6%); AD was present in 10 (14.5%). All AVF of Group B with the exception of one (1.4%) showed a positivity for Ki67, with a mean of 12.31 ± 13.79 positive cells/hot spot (range 0–65). Ki67-immunoreactive cells had a subendothelial localization in 23 (33.3%) cases, a myointimal localization in SMC in 35 (50.7%) cases. The number of positive cells was significantly correlated with subendothelial localization of Ki67 ( p = 0.001) and with NA ( p = 0.001). Conclusions: Native veins do not contain cycling cells. In contrast, vascular cell proliferation starts immediately after AVF creation and persists independently of the time the fistula is set up. The amount of proliferating cells is significantly associated with MIT and subendothelial localization of Ki67-immunoreactive cells, thus suggesting a role of Ki-67 index in predicting AVF failure.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sidney R. Lehky ◽  
Keiji Tanaka ◽  
Anne B. Sereno

AbstractWhen measuring sparseness in neural populations as an indicator of efficient coding, an implicit assumption is that each stimulus activates a different random set of neurons. In other words, population responses to different stimuli are, on average, uncorrelated. Here we examine neurophysiological data from four lobes of macaque monkey cortex, including V1, V2, MT, anterior inferotemporal cortex, lateral intraparietal cortex, the frontal eye fields, and perirhinal cortex, to determine how correlated population responses are. We call the mean correlation the pseudosparseness index, because high pseudosparseness can mimic statistical properties of sparseness without being authentically sparse. In every data set we find high levels of pseudosparseness ranging from 0.59–0.98, substantially greater than the value of 0.00 for authentic sparseness. This was true for synthetic and natural stimuli, as well as for single-electrode and multielectrode data. A model indicates that a key variable producing high pseudosparseness is the standard deviation of spontaneous activity across the population. Consistently high values of pseudosparseness in the data demand reconsideration of the sparse coding literature as well as consideration of the degree to which authentic sparseness provides a useful framework for understanding neural coding in the cortex.


Data in Brief ◽  
2020 ◽  
Vol 30 ◽  
pp. 105438
Author(s):  
Karina L. Lecomte ◽  
Cecilia V. Echegoyen ◽  
Paula A. Vignoni ◽  
Kateřina Kopalová ◽  
Tyler J. Kohler ◽  
...  

Ocean Science ◽  
2010 ◽  
Vol 6 (4) ◽  
pp. 887-900 ◽  
Author(s):  
M. Ezam ◽  
A. A. Bidokhti ◽  
A. H. Javid

Abstract. A three dimensional numerical model namely POM (Princeton Ocean Model) and observational data are used to study the Persian Gulf outflow structure and its spreading pathways during 1992. In the model, the monthly wind speed data were taken from ICOADS (International Comprehensive Ocean-Atmosphere Data Set) and the monthly SST (sea surface temperatures) were taken from AVHRR (Advanced Very High Resolution Radiometer) with the addition of monthly net shortwave radiations from NCEP (National Center for Environmental Prediction). The mean monthly precipitation rates from NCEP data and the calculated evaporation rates are used to impose the surface salinity fluxes. At the open boundaries the temperature and salinity were prescribed from the mean monthly climatological values from WOA05 (World Ocean Atlas 2005). Also the four major components of the tide were prescribed at the open boundaries. The results show that the outflow mainly originates from two branches at different depths in the Persian Gulf. The permanent branch exists during the whole year deeper than 40 m along the Gulf axis and originates from the inner parts of the Persian Gulf. The other seasonal branch forms in the vicinity of the shallow southern coasts due to high evaporation rates during winter. Near the Strait of Hormuz the two branches join and form the main outflow source water. The results of simulations reveal that during the winter the outflow boundary current mainly detaches from the coast well before Ras Al Hamra Cape, however during summer the outflow seems to follow the coast even after this Cape. This is due to a higher density of the colder outflow that leads to more sinking near the coast in winter. Thus, the outflow moves to a deeper depth of about 500 m (for which some explanations are given) while the main part detaches and spreads at a depth of about 300 m. However in summer it all moves at a depth of about 200–250 m. During winter, the deeper, stronger and wider outflow is more affected by the steep topography, leading to separation from the coast. While during summer, the weaker and shallower outflow is less influenced by bottom topography and so continues along the boundary.


Sign in / Sign up

Export Citation Format

Share Document