Geological map (scale 1:200,000) of the northern Main Ethiopian Rift and its implications for the volcano-tectonic evolution of the rift

2005 ◽  
Author(s):  
Tsegaye Abebe
Geosphere ◽  
2016 ◽  
Vol 12 (3) ◽  
pp. 706-720 ◽  
Author(s):  
Francesco Mazzarini ◽  
Nicolas Le Corvec ◽  
Ilaria Isola ◽  
Massimiliano Favalli

2020 ◽  
Author(s):  
Zara Franceschini ◽  
Stéphane Scaillet ◽  
Raffaello Cioni ◽  
Giacomo Corti ◽  
Federico Sani ◽  
...  

<p>The volcano-tectonic evolution of the Main Ethiopian Rift (MER) is punctuated with periods of intense silicic volcanism, characterized by large explosive caldera-forming eruptions and the production of several ignimbrite deposits. These volcanic paroxysms require large volume of evolved silicic magma accumulated in shallow chambers into the continental crust; however, the relations between magmatism and tectonics during rifting, and the influence of the distribution and timing of regional tectonics on the ascent of magma and its stalling in large magmatic reservoirs remain poorly defined.</p><p>We present new geochronological data (<sup>40</sup>Ar/<sup>39</sup>Ar dataset of 29 samples) providing new constraints on the timing, evolution and characteristics of volcanism in the Central sector of the MER, where large ignimbrite deposits and remnants of several calderas testify the recurrence of silicic flare-ups. Specifically, we investigate in detail the eastern margin of the rift, where a voluminous, widespread, crystal-rich ignimbrite (Munesa Crystal Tuff, MCT) has been described. This deposit has been correlated to a thick ignimbrite occurring at the bottom of geothermal wells in the rift, pointing to a giant eruptive event attributed to a huge caldera structure, presumably buried beneath the rift floor. At least other two widespread ignimbrite units are present along the same margin for several tens of kilometres, testifying the high volcanicity of this sector of the MER.</p><p>Our survey and analyses suggest that, at least in the eastern margin of the rift, activity was clustered in periods of large magma production and emission, resulting in the recurrence of intense volcanic phases interspersed with periods of rest of volcanism. Ignimbrites and other volcanic deposits occur in the investigated area, spanning an age interval from 3.5 Ma to as recent as 150 ka. The MCT emission, around 3.5 Ma, was followed, after a long quiescence, by an important phase with the emplacement of both mafic (lava flows and scoria cone) and evolved (ignimbrites) products between 1.9-1.6 Ma. After that, volcanism occurred more frequently, possibly with a lower amount of erupted magma and still alternating with quiescent periods, with volcanism clusters at ~ 1.3-1.2 Ma, ~ 0.8-0.7 Ma and ~ 0.3-0.2 Ma. This clustered volcanic activity will be compared with the episodic rifting of this sector of the Main Ethiopian Rift.</p>


2021 ◽  
Vol 29 (3) ◽  
pp. 1239-1260
Author(s):  
Tesfay Kiros Mebrahtu ◽  
Andre Banning ◽  
Ermias Hagos Girmay ◽  
Stefan Wohnlich

AbstractThe volcanic terrain at the western margin of the Main Ethiopian Rift in the Debre Sina area is known for its slope stability problems. This report describes research on the effects of the hydrogeological and hydrochemical dynamics on landslide triggering by using converging evidence from geological, geomorphological, geophysical, hydrogeochemical and isotopic investigations. The chemical characterization indicates that shallow to intermediate aquifers cause groundwater flow into the landslide mass, influencing long-term groundwater-level fluctuations underneath the landslide and, as a consequence, its stability. The low content of total dissolved solids and the bicarbonate types (Ca–Mg–HCO3 and Ca–HCO3) of the groundwater, and the dominantly depleted isotopic signature, indicate a fast groundwater flow regime that receives a high amount of precipitation. The main causes of the landslide are the steep slope topography and the pressure formed during precipitation, which leads to an increased weight of the loose and weathered materials. The geophysical data indicate that the area is covered by unconsolidated sediments and highly decomposed and weak volcanic rocks, which are susceptible to sliding when they get moist. The heterogeneity of the geological materials and the presence of impermeable layers embodied within the highly permeable volcanic rocks can result in the build-up of hydrostatic pressure at their interface, which can trigger landslides. Intense fracturing in the tilted basalt and ignimbrite beds can also accelerate infiltration of water, resulting to the build-up of high hydrostatic pressure causing low effective normal stress in the rock mass, giving rise to landslides.


Climate ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 92
Author(s):  
Tewodros R. Godebo ◽  
Marc A. Jeuland ◽  
Christopher J. Paul ◽  
Dagnachew L. Belachew ◽  
Peter G. McCornick

This work aims to assess water quality for irrigated agriculture, alongside perceptions and adaptations of farmers to climate change in the Main Ethiopian Rift (MER). Climate change is expected to cause a rise in temperature and variability in rainfall in the region, reducing surface water availability and raising dependence on groundwater. The study data come from surveys with 147 farmers living in the Ziway–Shala basin and water quality assessments of 162 samples from groundwater wells and surface water. Most groundwater samples were found to be unsuitable for long term agricultural use due to their high salinity and sodium adsorption ratio, which has implications for soil permeability, as well as elevated bicarbonate, boron and residual sodium carbonate concentrations. The survey data indicate that water sufficiency is a major concern for farmers that leads to frequent crop failures, especially due to erratic and insufficient rainfall. An important adaptation mechanism for farmers is the use of improved crop varieties, but major barriers to adaptation include a lack of access to irrigation water, credit or savings, appropriate seeds, and knowledge or information on weather and climate conditions. Local (development) agents are identified as vital to enhancing farmers’ knowledge of risks and solutions, and extension programs must therefore continue to promote resilience and adaptation in the area. Unfortunately, much of the MER groundwater that could be used to cope with declining viability of rainfed agriculture and surface water availability, is poor in quality. The use of saline groundwater could jeopardize the agricultural sector, and most notably commercial horticulture and floriculture activities. This study highlights the complex nexus of water quality and sufficiency challenges facing the agriculture sector in the region, and should help decision-makers to design feasible strategies for enhancing adaptation and food security.


2011 ◽  
Vol 60 (5) ◽  
pp. 315-327 ◽  
Author(s):  
Wakgari Furi ◽  
Moumtaz Razack ◽  
Tamiru Alemayehu Abiye ◽  
Tenalem Ayenew ◽  
Dagnachew Legesse

Sign in / Sign up

Export Citation Format

Share Document