scholarly journals Water Quality Threats, Perceptions of Climate Change and Behavioral Responses among Farmers in the Ethiopian Rift Valley

Climate ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 92
Author(s):  
Tewodros R. Godebo ◽  
Marc A. Jeuland ◽  
Christopher J. Paul ◽  
Dagnachew L. Belachew ◽  
Peter G. McCornick

This work aims to assess water quality for irrigated agriculture, alongside perceptions and adaptations of farmers to climate change in the Main Ethiopian Rift (MER). Climate change is expected to cause a rise in temperature and variability in rainfall in the region, reducing surface water availability and raising dependence on groundwater. The study data come from surveys with 147 farmers living in the Ziway–Shala basin and water quality assessments of 162 samples from groundwater wells and surface water. Most groundwater samples were found to be unsuitable for long term agricultural use due to their high salinity and sodium adsorption ratio, which has implications for soil permeability, as well as elevated bicarbonate, boron and residual sodium carbonate concentrations. The survey data indicate that water sufficiency is a major concern for farmers that leads to frequent crop failures, especially due to erratic and insufficient rainfall. An important adaptation mechanism for farmers is the use of improved crop varieties, but major barriers to adaptation include a lack of access to irrigation water, credit or savings, appropriate seeds, and knowledge or information on weather and climate conditions. Local (development) agents are identified as vital to enhancing farmers’ knowledge of risks and solutions, and extension programs must therefore continue to promote resilience and adaptation in the area. Unfortunately, much of the MER groundwater that could be used to cope with declining viability of rainfed agriculture and surface water availability, is poor in quality. The use of saline groundwater could jeopardize the agricultural sector, and most notably commercial horticulture and floriculture activities. This study highlights the complex nexus of water quality and sufficiency challenges facing the agriculture sector in the region, and should help decision-makers to design feasible strategies for enhancing adaptation and food security.

2019 ◽  
Vol 5 (4) ◽  
pp. 1859-1875 ◽  
Author(s):  
Alemu Ademe Bekele ◽  
Santosh Murlidhar Pingale ◽  
Samuel Dagalo Hatiye ◽  
Alemayehu Kasaye Tilahun

2020 ◽  
Vol 12 (8) ◽  
pp. 3437 ◽  
Author(s):  
Saleem A. Salman ◽  
Shamsuddin Shahid ◽  
Haitham Abdulmohsin Afan ◽  
Mohammed Sanusi Shiru ◽  
Nadhir Al-Ansari ◽  
...  

Decreases in climatic water availability (CWA) and increases in crop water demand (CWD) in the background of climate change are a major concern in arid regions because of less water availability and higher irrigation requirements for crop production. Assessment of the spatiotemporal changes in CWA and CWD is important for the adaptation of irrigated agriculture to climate change for such regions. The recent changes in CWA and CWD during growing seasons of major crops have been assessed for Iraq where rapid changes in climate have been noticed in recent decades. Gridded precipitation of the global precipitation climatology center (GPCC) and gridded temperature of the climate research unit (CRU) having a spatial resolution of 0.5°, were used for the estimation of CWA and CWD using simple water balance equations. The Mann–Kendall (MK) test and one of its modified versions which can consider long-term persistence in time series, were used to estimate trends in CWA for the period 1961–2013. In addition, the changes in CWD between early (1961–1990) and late (1984–2013) periods were evaluated using the Wilcoxon rank test. The results revealed a deficit in water in all the seasons in most of the country while a surplus in the northern highlands in all the seasons except summer was observed. A significant reduction in the annual amount of CWA at a rate of −1 to −13 mm/year was observed at 0.5 level of significance in most of Iraq except in the north. Decreasing trends in CWA in spring (−0.4 to −1.8 mm/year), summer (−5.0 to −11 mm/year) and autumn (0.3 to −0.6 mm/year), and almost no change in winter was observed. The CWA during the growing season of summer crop (millet and sorghum) was found to decrease significantly in most of Iraq except in the north. The comparison of CWD revealed an increase in agricultural water needs in the late period (1984–2013) compared to the early period (1961–1990) by 1.0–8.0, 1.0–14, 15–30, 14–27 and 0.0–10 mm for wheat, barley, millet, sorghum and potato, respectively. The highest increase in CWD was found in April, October, June, June and April for wheat, barley, millet, sorghum and potato, respectively.


2020 ◽  
pp. 108602661989754 ◽  
Author(s):  
Yetkin Borlu ◽  
Leland Glenna

The agricultural sector offers a unique opportunity to examine the topic of climate change because agriculture is more susceptible to climate disruptions than many other industrial sectors. Based on the analysis of the survey data and in-depth interviews with specialty-crop producers in California, New York, Pennsylvania, and Washington, we test the capacity of ecological modernization and treadmill of production perspectives to explain how resource-intensive producers recognize water availability and climate change as threats to their operation’s economic viability. We find that producers in capitalist markets recognize natural resource problems; however, they fail to respond to climate change beyond natural resource problems. We also find that local markets play a positive role in raising environmental awareness of producers. Finally, our finding on the association between the perceptions of water availability and climate change goes beyond the treadmill of production dualism that only theorizes the impacts of economic factors on the environment.


2017 ◽  
Vol 3 ◽  
pp. 111-123 ◽  
Author(s):  
Jolanta Dąbrowska ◽  
◽  
Katarzyna Pawęska ◽  
Paweł B. Dąbek ◽  
Radosław Stodolak ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251489
Author(s):  
Patrick A. Breach ◽  
Slobodan P. Simonovic

The ANEMI model is an integrated assessment model of global change that emphasizes the role of water resources. The model is based on the principles of system dynamics simulation to analyze changes in the Earth system using feedback processes. Securing water resources for the future is a key issue of global change, and ties into global systems of population growth, climate change, carbon cycle, hydrologic cycle, economy, energy production, land use and pollution generation. Here the third iteration of the model–ANEMI3 is described, along with the methods used for parameter estimation and model testing. The main differences between ANEMI3 and previous versions include: (i) implementation of the energy-economy system based on the principles of system dynamics simulation; (ii) incorporation of water supply as an additional sector in the global economy that parallels the production of energy; (iii) inclusion of climate change effects on land yield and potentially arable land for food production, and (iv) addition of nitrogen and phosphorus based nutrient cycles as indicators of global water quality, which affect the development of surface water supplies. The model is intended for analyzing long-term global feedbacks which drive global change. Because of this, there are limitations related to the spatial scale that is used. However, the model’s simplicity can be considered a strength, as it allows for the driving feedbacks to be more easily identified. The model in its current form allows for a variety of scenarios to be created to address global issues such as climate change from an integrated perspective, or to examine the change in one model sector on Earth system behaviour. The endogenous structure of the model allows for global change to be driven entirely by model structure rather than exogenous inputs. The new additions to the ANEMI3 model are found to capture long term trends associated with global change, while allowing for the development of water supplies to be represented using an integrated approach considering global economy and surface water quality.


Author(s):  
Peter Kishiwa ◽  
Joel Nobert ◽  
Victor Kongo ◽  
Preksedis Ndomba

Abstract. This study was designed to investigate the dynamics of current and future surface water availability for different water users in the upper Pangani River Basin under changing climate. A multi-tier modeling technique was used in the study, by coupling the Soil and Water Assessment Tool (SWAT) and Water Evaluation And Planning (WEAP) models, to simulate streamflows under climate change and assess scenarios of future water availability to different socio-economic activities by year 2060. Six common Global Circulation Models (GCMs) from WCRP-CMIP3 with emissions Scenario A2 were selected. These are HadCM3, HadGEM1, ECHAM5, MIROC3.2MED, GFDLCM2.1 and CSIROMK3. They were downscaled by using LARS-WG to station scale. The SWAT model was calibrated with observed data and utilized the LARS-WG outputs to generate future streamflows before being used as input to WEAP model to assess future water availability to different socio-economic activities. GCMs results show future rainfall increase in upper Pangani River Basin between 16–18 % in 2050s relative to 1980–1999 periods. Temperature is projected to increase by an average of 2 ∘C in 2050s, relative to baseline period. Long-term mean streamflows is expected to increase by approximately 10 %. However, future peak flows are estimated to be lower than the prevailing average peak flows. Nevertheless, the overall annual water demand in Pangani basin will increase from 1879.73 Mm3 at present (2011) to 3249.69 Mm3 in the future (2060s), resulting to unmet demand of 1673.8 Mm3 (51.5 %). The impact of future shortage will be more severe in irrigation where 71.12 % of its future demand will be unmet. Future water demands of Hydropower and Livestock will be unmet by 27.47 and 1.41 % respectively. However, future domestic water use will have no shortage. This calls for planning of current and future surface water use in the upper Pangani River Basin.


2020 ◽  
Vol 12 (11) ◽  
pp. 4370
Author(s):  
Leushantha Mudaly ◽  
Michael van der Laan

Little is understood on the interaction between irrigated agriculture and surface water quality in South African catchments. A case study was conducted on the Middle Olifants Catchment, which contains the second largest irrigation scheme in South Africa. Dams, rivers, irrigation canals, and drainage canals were sampled between the Loskop and Flag Boshielo Dams. Results were compared to historical water quality monitoring data from the Department of Water and Sanitation (DWS). While DWS data indicate that phosphate-phosphorus (PO4-P) does not pose a eutrophication risk, our monitored data were above the eutrophication threshold for the majority of the sampling period. In general, phosphorus (P) pollution is a bigger issue than nitrogen (N), and concentrations of these nutrients tend to be higher during the summer rainfall months, potentially indicating a link to agriculture and fertilization events. We estimated that waste water treatment works (WWTW), which are currently systematically failing in South Africa, have the potential to pollute as much P as irrigated agriculture. Electrical conductivity levels increased downstream, moving from the acceptable towards the tolerable category, while the sodium adsorption ratio (SAR) presents a moderate risk of infiltrability problems. The pH values were generally in the ideal range. This study has highlighted existing and looming water quality issues for irrigation and the environment in the Middle Olifants. Similar scoping studies are recommended for other intensively-irrigated catchments in the region to identify issues and allow timely intervention.


Sign in / Sign up

Export Citation Format

Share Document