Nonempirical quantum-chemical calculations of the magnetic shielding tensor of nuclei 47, 49Ti in crystalline titanium oxides

2000 ◽  
Vol 42 (8) ◽  
pp. 1447-1450
Author(s):  
L. S. Vorotilova ◽  
L. V. Dmitrieva ◽  
B. F. Shchegolev
2007 ◽  
Vol 85 (7-8) ◽  
pp. 496-505 ◽  
Author(s):  
Samyuktha Adiga ◽  
Dominic Aebi ◽  
David L Bryce

A computer program (EFGShield) is described that simplifies and summarizes the output from electric field gradient (EFG) and nuclear magnetic shielding tensor calculations performed independently using existing quantum chemical software. In addition to summarizing tensor magnitudes according to conventions commonly used by solid-state NMR spectroscopists, the program provides Euler angles relating the orientations of the EFG and shielding tensor principal axis systems (PAS). An atomic coordinate file is generated that also contains dummy atoms representing the orientations of the EFG and shielding tensor PASs in the molecular framework. We demonstrate the functionality of the program using calculations of the chlorine EFG and shielding tensors for strontium chloride dihydrate and calcium chloride dihydrate. Several models of the chloride environment in these compounds are tested, including those where point charges are used to represent the extended three-dimensional lattices within the self-consistent charge field perturbation approach. The results highlight both the shortcomings and successes of traditional localized orbital-based basis sets in the description of the NMR properties of extended systems. We anticipate that EFGShield will be a useful tool for spectroscopists using quantum chemical software to aid in the interpretation of experimental data.Key words: quantum chemical calculations, computer program, electric field gradient tensor, quadrupolar coupling constant, nuclear magnetic shielding tensor, Euler angles, alkaline earth chloride hydrates.


2020 ◽  
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced ‘quantum chemistry aided retrosynthetic analysis’ (QCaRA), which uses quantum chemical calculations to search systematically for decomposition paths of the target product and propose a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the seemingly most promising path led to the discovery of a synthesis method for the difluoroglycine derivative. The extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.


2020 ◽  
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced ‘quantum chemistry aided retrosynthetic analysis’ (QCaRA), which uses quantum chemical calculations to search systematically for decomposition paths of the target product and propose a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the seemingly most promising path led to the discovery of a synthesis method for the difluoroglycine derivative. The extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.


2019 ◽  
Author(s):  
Przemyslaw Rzepka ◽  
Zoltán Bacsik ◽  
Andrew J. Pell ◽  
Niklas Hedin ◽  
Aleksander Jaworski

Formation of CO<sub>3</sub><sup>2-</sup> and HCO<sub>3</sub><sup>-</sup> species without participation of the framework oxygen atoms upon chemisorption of CO<sub>2</sub> in zeolite |Na<sub>12</sub>|-A is revealed. The transfer of O and H atoms is very likely to have proceeded via the involvement of residual H<sub>2</sub>O or acid groups. A combined study by solid-state <sup>13</sup>C MAS NMR, quantum chemical calculations, and <i>in situ</i> IR spectroscopy showed that the chemisorption mainly occurred by the formation of HCO<sub>3</sub><sup>-</sup>. However, at a low surface coverage of physisorbed and acidic CO<sub>2</sub>, a significant fraction of the HCO<sub>3</sub><sup>-</sup> was deprotonated and transformed into CO<sub>3</sub><sup>2-</sup>. We expect that similar chemisorption of CO<sub>2</sub> would occur for low-silica zeolites and other basic silicates of interest for the capture of CO<sub>2</sub> from gas mixtures.


Author(s):  
Lucy van Dijk ◽  
Ruchuta Ardkhean ◽  
Mireia Sidera ◽  
Sedef Karabiyikoglu ◽  
Özlem Sari ◽  
...  

A mechanism for Rh(I)-catalyzed asymmetric Suzuki-Miyaura coupling with racemic allyl halides is proposed based on a combination of experimental studies and quantum chemical calculations. <br>


Sign in / Sign up

Export Citation Format

Share Document