Deep-sea pycnogonids from the North Atlantic and their distribution in the World Ocean

Oceanology ◽  
2006 ◽  
Vol 46 (1) ◽  
pp. 57-62 ◽  
Author(s):  
A. K. Raiskii ◽  
E. P. Turpaeva
1945 ◽  
Vol 49 (410) ◽  
pp. 51-54
Author(s):  
A. Gouge

A Study of the air routes of the world brings out almost at once the fact that some of the most difficult route are also the most attractive. For instance, the North Atlantic route which couples North America with Europe is certainly one of the most difficult in the world, but also by the fact that it couples two of the most densely populated, as well as the most wealthy groups of people in the world, one of the most attractive.


2015 ◽  
Vol 12 (6) ◽  
pp. 2591-2616
Author(s):  
I. Wróbel ◽  
J. Piskozub

Abstract. The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air–sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.


1937 ◽  
Vol 18 (1) ◽  
pp. 224
Author(s):  
W. H. Bradley ◽  
M. N. Bramlette ◽  
J. A. Cushman ◽  
L. G. Henbest ◽  
K. E. Lahman ◽  
...  

2020 ◽  
Vol 73 ◽  
pp. 125664 ◽  
Author(s):  
Suzana Živaljić ◽  
Anja Scherwass ◽  
Alexandra Schoenle ◽  
Manon Hohlfeld ◽  
Pablo Quintela-Alonso ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Patricia Puerta ◽  
Clare Johnson ◽  
Marina Carreiro-Silva ◽  
Lea-Anne Henry ◽  
Ellen Kenchington ◽  
...  

Zootaxa ◽  
2020 ◽  
Vol 4766 (2) ◽  
pp. 201-260 ◽  
Author(s):  
CHRISTOPHER L. MAH

Exploratory cruises by the NOAA Ship Okeanos Explorer have resulted in a substantial contribution in our understanding of deep-sea echinoderm biodiversity, biology, and ecology in the North Atlantic. This includes the description and in situ feeding observations of two, new corallivorous goniasterid species, Evoplosoma nizinskiae n. sp. and Sibogaster bathyheuretor n. sp. Significant in situ observations include a synchronous feeding event including multiple goniasterid asteroids and a cidaroid urchin on a large demosponge, providing new data for understanding echinoderm feeding behavior, including agonistic behavior, in deep-sea settings and new, in situ feeding observations for 28 deep-sea species including the myxasterid Pythonaster atlantidis, the korethrasterid Remaster palmatus and the poorly understood hippasterine goniasterids, Gilbertaster caribaea and Sthenaster emmae. 


Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 1123-1134 ◽  
Author(s):  
T. J. McDougall ◽  
D. R. Jackett ◽  
F. J. Millero ◽  
R. Pawlowicz ◽  
P. M. Barker

Abstract. The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).


2020 ◽  
Vol 97 (3) ◽  
pp. 285-296
Author(s):  
Rodney A. Bray ◽  
Andrea Waeschenbach ◽  
D. Timothy J. Littlewood ◽  
Odd Halvorsen ◽  
Peter D. Olson

Author(s):  
Les Watling

Exploration of the New England and Corner Rise Seamounts produced four new species of chrysogorgiid octocorals with the spiral iridogorgiid growth form. Three species are described as new in the genus Iridogorgia and one is described in the new genus Rhodaniridogorgia. Both genera have representatives in the Atlantic and Pacific Oceans. Iridogorgia magnispiralis sp. nov., is one of the largest octocorals encountered in the deep sea and seems to be widespread in the Atlantic.


Sign in / Sign up

Export Citation Format

Share Document