Plant Growth-promoting Activities of Penicillium sp. NAUSF2 Ameliorate Vigna radiata Salinity Stress in Phosphate-deficient Saline Soil

2021 ◽  
Vol 57 (4) ◽  
pp. 500-507
Author(s):  
S. Patel ◽  
V. Parekh ◽  
K. Patel ◽  
S. Jha
Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 927
Author(s):  
Supriya P. Kusale ◽  
Yasmin C. Attar ◽  
R. Z. Sayyed ◽  
Hesham El Enshasy ◽  
Siti Zulaiha Hanapi ◽  
...  

Although wheat and maize are the major economically important cereal crops and staple food sources in the world, their productivity is highly affected by excess salts in soil (salinity). Applications of multifarious halophilic plant growth-promoting rhizobacteria (PGPR) in saline soil protect the plants from osmotic damages and promote plant growth through the secretion of plant growth promoting (PGP) and osmolytes. In this study, Klebsiella variicola SURYA6—a PGPR—was evaluated for plant-growth-promotion and salinity amelioration in wheat and maize, and enrichment of soil nutrients. The results of the present study revealed that K. variicola SURYA6 grows luxuriously under high salinity stress conditions and produces copious amounts of three principal salinity ameliorating traits, such as 1 aminocyclopropane-1-carboxylate deaminase (ACCD), indole-3-acetic acid (IAA), exopolysaccharides (EPS), and osmolytes—such as proline, sugars, proteins, and amino acids. The isolate also exhibited sensitivity to a wide range of antibiotics, lack of hemolytic ability, and absence of catalase and oxidase activities confirming its nonpathogenic nature. Inoculation of wheat and maize seeds with this multifarious strain, improved the physicochemical properties of soil, improved seed germination by 33.9% and 36.0%, root length by 111.0%, 35.1%, shoot height by 64.8% and 78.9%, and chlorophyll content by 68.4% and 66.7% in wheat and maize seedlings, respectively, at 45 days after sowing (DAS) under salinity stress. The improvement in plant growth can be correlated with the secretion of PGP traits and improved, uptake of minerals such as nitrogen (N), phosphorus (P), sodium (Na), potassium (K), and magnesium (Mg). While amelioration of salinity can be the result of secretion of osmolytes and the change in pH from salinity to neutrality. This inoculation also significantly improved the soil nutrients under salinity stress conditions. Inoculation of K. variicola SURYA6, resulted in more improved growth and nutrients contents in plants and enriched soil nutrients under salinity stress as compared to normal (non-saline) conditions. Such multifarious strain can serve as a potent bio-inoculant for growth promotion of wheat and maize in saline soil. However, multi-year field trials under different agro-climatic conditions are required to confirm the bio-efficacy of K. variicola SURYA6.


2021 ◽  
Author(s):  
Sajid Rashid Ahmad ◽  
Sana Ashraf ◽  
Humaira Nawaz

Saline soil is one of the common environmental issues that negatively affects the soil quality of agricultural lands. It reduces the plant growth and productivity worldwide. Soil Salinity and sodicity affecting land about 1128 million hectares globally determined by recent researches. The most important salt-sensitive cereal crops in the world are Maize (Zea mays L.) For food security, its need of hour to securing attainable production of maize crop in the salt affected soils. To reduce negative impacts of saline soil on plant growth, sustainable approaches such as organic amendments like press mud and inorganic amendments like silicon can be applied. For increasing crop productivity, plant growth promoting rhizobacteria (PGPR) which are salt-tolerant in saline agriculture can also be applied. In this book chapter interactive effect of different organic and inorganic amendments and plant growth-promoting rhizobacteria to reduce salinity stress on maize has been discussed.


2021 ◽  
Vol 9 (8) ◽  
pp. 1588
Author(s):  
Anastasia Venieraki ◽  
Styliani N. Chorianopoulou ◽  
Panagiotis Katinakis ◽  
Dimitris L. Bouranis

Plant growth promoting rhizobacteria (PGPR) can be functional microbial fertilizers and/or biological control agents, contributing to an eco-spirit and safe solution for chemical replacement. Therefore, we have isolated rhizospheric arylsulfatase (ARS)-producing bacteria, belonging to Pseudomonas and Bacillus genus, from durum wheat crop grown on calcareous soil. These isolates harbouring plant growth promoting (PGP) traits were further evaluated in vitro for additional PGP traits, including indole compounds production and biocontrol activity against phytopathogens, limiting the group of multi-trait strains to eight. The selected bacterial strains were further evaluated for PGP attributes associated with biofilm formation, compatibility, salt tolerance ability and effect on plant growth. In vitro studies demonstrated that the multi-trait isolates, Bacillus (1.SG.7, 5.SG.3) and Pseudomonas (2.SG.20, 2.C.19) strains, enhanced the lateral roots abundance and shoots biomass, mitigated salinity stress, suggesting the utility of beneficial ARS-producing bacteria as potential microbial fertilizers. Furthermore, in vitro studies demonstrated that compatible combinations of multi-trait isolates, Bacillus sp. 1.SG.7 in a mixture coupled with 5.SG.3, and 2.C.19 with 5.SG.3 belonging to Bacillus and Pseudomonas, respectively, may enhance plant growth as compared to single inoculants.


2015 ◽  
Vol 42 (8) ◽  
pp. 770 ◽  
Author(s):  
Saqib Saleem Akhtar ◽  
Mathias Neumann Andersen ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir ◽  
Fulai Liu

The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.


2009 ◽  
Vol 329 (1-2) ◽  
pp. 421-431 ◽  
Author(s):  
Tania Taurian ◽  
María Soledad Anzuay ◽  
Jorge Guillermo Angelini ◽  
María Laura Tonelli ◽  
Liliana Ludueña ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document