Programmed cell death in plants: Effect of protein synthesis inhibitors and structural changes in pea guard cells

2006 ◽  
Vol 71 (4) ◽  
pp. 395-405 ◽  
Author(s):  
E. V. Dzyubinskaya ◽  
D. B. Kiselevsky ◽  
L. E. Bakeeva ◽  
V. D. Samuilov
2002 ◽  
Vol 282 (3) ◽  
pp. L477-L483 ◽  
Author(s):  
Cédric Luyet ◽  
Peter H. Burri ◽  
Johannes C. Schittny

Prematurely born babies are often treated with glucocorticoids. We studied the consequences of an early postnatal and short dexamethasone treatment (0.1–0.01 μg/g, days 1–4) on lung development in rats, focusing on its influence on peaks of cell proliferation around day 4 and of programmed cell death at days 19–21. By morphological criteria, we observed a dexamethasone-induced premature maturation of the septa ( day 4), followed by a transient septal immatureness and delayed alveolarization leading to complete rescue of the structural changes. The numbers of proliferating (anti-Ki67) and dying cells (TdT-mediated dUTP nick end labeling) were determined and compared with controls. In dexamethasone-treated animals, both the peak of cell proliferation and the peak of programmed cell death were reduced to baseline, whereas the expression of tissue transglutaminase (transglutaminase-C), another marker for postnatal lung maturation, was not significantly altered. We hypothesize that a short neonatal course of dexamethasone leads to severe but transient structural changes of the lung parenchyma and influences the balance between cell proliferation and cell death even in later stages of lung maturation.


1992 ◽  
Vol 119 (6) ◽  
pp. 1669-1680 ◽  
Author(s):  
P W Mesner ◽  
T R Winters ◽  
S H Green

Previous studies have shown that in neuronal cells the developmental phenomenon of programmed cell death is an active process, requiring synthesis of both RNA and protein. This presumably reflects a requirement for novel gene products to effect cell death. It is shown here that the death of nerve growth factor-deprived neuronal PC12 cells occurs at the same rate as that of rat sympathetic neurons and, like rat sympathetic neurons, involves new transcription and translation. In nerve growth factor-deprived neuronal PC12 cells, a decline in metabolic activity, assessed by uptake of [3H]2-deoxyglucose, precedes the decline in cell number, assessed by counts of trypan blue-excluding cells. Both declines are prevented by actinomycin D and anisomycin. In contrast, the death of nonneuronal (chromaffin-like) PC12 cells is not inhibited by transcription or translation inhibitors and thus does not require new protein synthesis. DNA fragmentation by internucleosomal cleavage does not appear to be a consistent or significant aspect of cell death in sympathetic neurons, neuronal PC12 cells, or nonneuronal PC12 cells, notwithstanding that the putative nuclease inhibitor aurintricarboxylic acid protects sympathetic neurons, as well as neuronal and nonneuronal PC12 cells, from death induced by trophic factor removal. Both phenotypic classes of PC12 cells respond to aurintricarboxylic acid with similar dose-response characteristics. Our results indicate that programmed cell death in neuronal PC12 cells, but not in nonneuronal PC12 cells, resembles programmed cell death in sympathetic neurons in significant mechanistic aspects: time course, role of new protein synthesis, and lack of a significant degree of DNA fragmentation.


1994 ◽  
Vol 72 (11-12) ◽  
pp. 597-601 ◽  
Author(s):  
Reginald Halaby ◽  
Zahra Zakeri ◽  
Richard A. Lockshin

The labial gland of Manduca sexta is a valuable system to study the mechanisms of programmed cell death since the death of the gland is nearly synchronous and, except for the anterior duct, involves all of the tissue. The gland degenerates in 5 days during pupation. Our previous work documents a drop in total protein synthesis as the gland degenerates. To evaluate potential causes of this altered protein synthesis, we monitored several parameters of metabolism in dying cells: levels of adenosine triphosphate to estimate the energy resources of the gland; reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to assess mitochondrial respiration; levels of acid phosphatase to assay lysosomal enzyme activity; and concentrations of cyclic nucleotides and inositol triphosphate to monitor signaling. While protein synthesis fell precipitously on day 0, total adenosine triphosphate and mitochondrial respiration were unchanged until the cells underwent massive collapse on day 3. Lysosomal acid phosphatase increased during early metamorphosis, and ultimately the bulk of the cytoplasm was destroyed in autophagic vacuoles. Changes in the concentrations of second messengers were modest and late. The relationships between the metabolism and the collapse of the labial gland are under investigation.Key words: programmed cell death, Manduca sexta, energetics, lysosomes, second messengers, protein synthesis.


2005 ◽  
Vol 70 (9) ◽  
pp. 972-979 ◽  
Author(s):  
L. E. Bakeeva ◽  
E. V. Dzyubinskaya ◽  
V. D. Samuilov

1992 ◽  
Vol 663 (1 Aging and Cel) ◽  
pp. 234-249 ◽  
Author(s):  
RICHARD A. LOCKSHIN ◽  
ZAHRA F. ZAKERI

1994 ◽  
Vol 179 (3) ◽  
pp. 785-796 ◽  
Author(s):  
A O Hueber ◽  
G Raposo ◽  
M Pierres ◽  
H T He

Programmed cell death plays an important role during thymocyte development, since a vast majority (97%) of mouse cortical thymocytes die in thymus, whereas only 3% of these cells are rescued from cell death and positively selected. Although it seems well established that thymocyte fate depends upon appropriate surface-expressed T cell receptor, little is known about the molecular mechanism(s) responsible for the massive thymocyte elimination that occurs in the thymus. We report here that Thy-1 is capable of triggering mouse thymocyte death in vitro through a bcl-2-resistant mechanism. We have previously shown that Thy-1 is involved in mouse thymocyte adhesion to thymic stroma through interaction with an epithelial cell ligand. To examine the Thy-1 signaling function in thymocytes, we have mimicked its interaction with stromal cells by culturing mouse thymocytes onto tissue culture plates coated with monoclonal antibodies (mAb) directed at distinct Thy-1 epitope regions. mAb recognizing determinants in a defined Thy-1 structural domain, but not others, were found to induce marked thymocyte apoptosis as evidenced by morphological and biochemical data. Use of a quantitative DNA dot blot assay indicated that Thy-1-mediated thymocyte apoptosis was not blocked by RNA or protein synthesis inhibitors, EGTA, or by cyclosporin A, and differed, therefore, from "activation-driven cell death". Moreover, Thy-1(+)-transfected, but not wild-type AKR1 (Thy-1-d) thymoma cells underwent apoptosis after ligation with apoptosis-inducing, Thy-1-specific mAb. In contrast to thymocytes, the latter event was inhibitable by RNA and protein synthesis inhibitors, an indication that thymocytes, but not thymoma cells, contain the molecular components necessary for Thy-1-driven apoptosis. We further showed that Thy-1-triggered thymocyte death is a developmentally regulated process operative in fetal thymocytes from day 17 of gestation, but not in peripheral T cells. Indeed, the target of apoptosis by anti-Thy-1 was found to reside mainly within the CD4+8+3- and CD4+8+3lo double positive immature thymocyte subsets. Finally, it is of major interest that Thy-1-mediated apoptosis, which was found to be readily detectable in thymocytes from bcl-2-transgenic mice, represents a thus far unique experimental system for studying bcl-2-resistant thymocyte death mechanism(s).


Author(s):  
Zahra Zakeri ◽  
Daniela Quaglino ◽  
Theresa Latham ◽  
Kim Woo ◽  
Richard A. Lockshin

2001 ◽  
Vol 183 (6) ◽  
pp. 2046-2050 ◽  
Author(s):  
Ronen Hazan ◽  
Boaz Sat ◽  
Myriam Reches ◽  
Hanna Engelberg-Kulka

ABSTRACT “Addiction modules” consist of two genes; the product of the second is long lived and toxic, while the product of the first is short lived and antagonizes the lethal action of the toxin. The extrachromosomal addiction module phd-doc, located on the P1 prophage, is responsible for the postsegregational killing effect (death of plasmid-free cells). The Escherichia colichromosomal addiction module analogue, mazEF, is responsible for the induction of programmed cell death. Here we show that the postsegregational killing mediated by the P1phd-doc module depends on the presence of the E. coli mazEF system. In addition, we demonstrate that under conditions of postsegregational killing, mediated byphd-doc, protein synthesis of E. coli is inhibited. Based on our findings, we suggest the existence of a coupling between the phd-doc and mazEFsystems.


Sign in / Sign up

Export Citation Format

Share Document