Suppression of cell proliferation and programmed cell death by dexamethasone during postnatal lung development

2002 ◽  
Vol 282 (3) ◽  
pp. L477-L483 ◽  
Author(s):  
Cédric Luyet ◽  
Peter H. Burri ◽  
Johannes C. Schittny

Prematurely born babies are often treated with glucocorticoids. We studied the consequences of an early postnatal and short dexamethasone treatment (0.1–0.01 μg/g, days 1–4) on lung development in rats, focusing on its influence on peaks of cell proliferation around day 4 and of programmed cell death at days 19–21. By morphological criteria, we observed a dexamethasone-induced premature maturation of the septa ( day 4), followed by a transient septal immatureness and delayed alveolarization leading to complete rescue of the structural changes. The numbers of proliferating (anti-Ki67) and dying cells (TdT-mediated dUTP nick end labeling) were determined and compared with controls. In dexamethasone-treated animals, both the peak of cell proliferation and the peak of programmed cell death were reduced to baseline, whereas the expression of tissue transglutaminase (transglutaminase-C), another marker for postnatal lung maturation, was not significantly altered. We hypothesize that a short neonatal course of dexamethasone leads to severe but transient structural changes of the lung parenchyma and influences the balance between cell proliferation and cell death even in later stages of lung maturation.

2008 ◽  
Vol 105 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Kewu Huang ◽  
Richard Rabold ◽  
Eric Abston ◽  
Brian Schofield ◽  
Vikas Misra ◽  
...  

Leptin modulates energy metabolism and lung development. We hypothesize that the effects of leptin on postnatal lung development are volume dependent from 2 to 10 wk of age and are independent of hypometabolism associated with leptin deficiency. To test the hypotheses, effects of leptin deficiency on lung maturation were characterized in age groups of C57BL/6J mice with varying Lep ob genotypes. Quasi-static pressure-volume curves and respiratory impedance measurements were performed to profile differences in respiratory system mechanics. Morphometric analysis was conducted to estimate alveolar size and number. Oxygen consumption was measured to assess metabolic rate. Lung volume at 40-cmH2O airway pressure (V40) increased with age in each genotypic group, and V40 was significantly ( P < 0.05) lower in leptin-deficient ( ob/ ob) mice beginning at 2 wk. Differences were amplified through 7 wk of age relative to wild-type (+/+) mice. Morphometric analysis showed that alveolar surface area was lower in ob/ ob compared with +/+ and heterozygote ( ob/+) mice beginning at 2 wk. Unlike the other genotypic groups, alveolar size did not increase with age in ob/ ob mice. In another experiment, ob/ ob at 4 wk received leptin replacement (5 μg·g−1·day−1) for 8 days, and expression levels of the Col1a1, Col3a1, Col6a3, Mmp2, Tieg1, and Stat1 genes were significantly increased concomitantly with elevated V40. Leptin-induced increases in V40 corresponded with enlarged alveolar size and surface area. Gene expression suggested a remodeling event of lung parenchyma after exogenous leptin replacement. These data support the hypothesis that leptin is critical to postnatal lung remodeling, particularly related to increased V40 and enlarged alveolar surface area.


1998 ◽  
Vol 18 (6) ◽  
pp. 786-793 ◽  
Author(s):  
Johannes C. Schittny ◽  
Valentin Djonov ◽  
Alan Fine ◽  
Peter H. Burri

2006 ◽  
Vol 13 (5) ◽  
pp. 191-193
Author(s):  
V. Sangwan ◽  
M. Park

Tight control of cell proliferation and morphogenesis in conjunction with programmed cell death (apoptosis) is required to ensure normal tissue patterning. [...]


Author(s):  
Dong Yang ◽  
Jian-Jun Wang ◽  
Jin-Song Li ◽  
Qian-Yu Xu

Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancer cases. Absence of miR-103 has recently been identified to be associated with metastatic capacity of primary lung tumors. However, the exact role of miR-103 in NSCLC and the molecular mechanism are unclear. In the present study, we showed that miR-103 expression was reduced in NSCLC tissues and cells. miR-103 expression was negatively correlated with tumor size and stage. The overall survival was longer in patients with higher miR-103 level than in those with lower miR-103 expression. miR-103 inhibited cell proliferation in A549 cells, decreased tumor weight and volume, and prolonged survival of tumor-implanted nude mice. miR-103 increased apoptotic cell death in A549 cells. Furthermore, miR-103 decreased the invasion and migration abilities in A549 cells, as evidenced by Transwell and wound healing results. Downregulation of miR-103 significantly reduced the level of programmed cell death 10 (PDCD10). We found a significant decrease in the relative luciferase activity of the reporter gene in A549 cells cotransfected with the miR-103 mimic and pGL3-PDCD10 WT 3′-UTR, but not pGL3-PDCD10 mut 3′-UTR. We showed that overexpression of PDCD10 significantly inhibited miR-103-induced inhibition of cell proliferation, increased apoptosis, and decreased invasion and migration in A549 cells. Moreover, we found that PDCD10 expression was increased in NSCLC tissues and cells. PDCD10 expression was positively correlated with tumor size and stage. Overexpression of PDCD10 increased cell proliferation and inhibited apoptosis in A549 cells. The data demonstrated that dysregulation of the miR-103/PDCD10 signal may be a novel therapeutic target for the treatment of NSCLC.


1994 ◽  
Vol 14 (10) ◽  
pp. 6584-6596
Author(s):  
G Melino ◽  
M Annicchiarico-Petruzzelli ◽  
L Piredda ◽  
E Candi ◽  
V Gentile ◽  
...  

In this report, we show that the overexpression of tissue transglutaminase (tTG) in the human neuroblastoma cell line SK-N-BE(2) renders these neural crest-derived cells highly susceptible to death by apoptosis. Cells transfected with a full-length tTG cDNA, under the control of a constitutive promoter, show a drastic reduction in proliferative capacity paralleled by a large increase in cell death rate. The dying tTG-transfected cells exhibit both cytoplasmic and nuclear changes characteristic of cells undergoing apoptosis. The tTG-transfected cells express high Bcl-2 protein levels as well as phenotypic neural cell adhesion molecule markers (NCAM and neurofilaments) of cells differentiating along the neuronal pathway. In keeping with these findings, transfection of neuroblastoma cells with an expression vector containing segments of the human tTG cDNA in antisense orientation resulted in a pronounced decrease of both spontaneous and retinoic acid (RA)-induced apoptosis. We also present evidence that (i) the apoptotic program of these neuroectodermal cells is strictly regulated by RA and (ii) cell death by apoptosis in the human neuroblastoma SK-N-BE(2) cells preferentially occurs in the substrate-adherent phenotype. For the first time, we report here a direct effect of tTG in the phenotypic maturation toward apoptosis. These results indicate that the tTG-dependent irreversible cross-linking of intracellular protein represents an important biochemical event in the induction of the structural changes featuring cells dying by apoptosis.


2018 ◽  
Vol 14 (13) ◽  
pp. 1800-1812 ◽  
Author(s):  
Xixi Dou ◽  
Lichan Chen ◽  
Mingjuan Lei ◽  
Lucas Zellmer ◽  
Qingwen Jia ◽  
...  

FEBS Letters ◽  
1992 ◽  
Vol 311 (2) ◽  
pp. 174-178 ◽  
Author(s):  
S. El Alaoui ◽  
S. Mian ◽  
J. Lawry ◽  
G. Quash ◽  
M. Griffin

Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1089-1094 ◽  
Author(s):  
M. Pesce ◽  
M.G. Farrace ◽  
M. Piacentini ◽  
S. Dolci ◽  
M. De Felici

Proliferating primordial germ cells (PGCs) isolated from mouse embryos soon after their arrival in the genital ridges would only survive in vitro at temperature of less than 30 degrees C (De Felici, M. and McLaren, A. (1983). Exp. Cell. Res. 144, 417–427; Wabik-Sliz, B. and McLaren, A. (1984). Exp. Cell. Res. 154, 530–536) or when co-cultured on cell feeder layers (Donovan, P. J., Stott, D., Godin, I., Heasman, J. and Wylie, C. C. (1986). Cell 44, 831–838; De Felici, M. and Dolci, S. (1991). Dev. Biol. 147, 281–284). In the present paper we report that mouse PGC death in vitro occurs with all the hallmarks of programmed cell death or apoptosis. We found that after 4–5 hours in culture many PGCs isolated from 12.5 dpc fetal gonads assumed a nuclear morphology and produced membrane bound fragments (apoptotic bodies) typical of apoptotic cells. In addition, PGCs in culture accumulated high level of tissue transglutaminase (tTGase; an enzyme that is induced and activated during apoptosis) and showed extensive degradation of DNA to oligonucleosomal fragments, which is characteristic of apoptosis. The physiological relevance of this mechanism of PGC death is supported by the finding that some PGCs undergoing apoptosis, as revealed by the high level of tTGase expression, were detected in the embryo. Most importantly, we show that the addition of stem cell factor (SCF) or leukemia inhibitory factor (LIF) to the culture medium, two cytokines known to favour PGC survival and/or proliferation in vitro, markedly reduced the occurrence of apoptosis in PGCs during the first hours in culture.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document