scholarly journals Far Field of a Three-Dimensional Laminar Wall Jet

2021 ◽  
Vol 56 (6) ◽  
pp. 812-823
Author(s):  
I. I. But ◽  
A. M. Gailfullin ◽  
V. V. Zhvick

Abstract We consider a steady submerged laminar jet of viscous incompressible fluid flowing out of a tube and propagating along a solid plane surface. The numerical solution of Navier–Stokes equations is obtained in the stationary three-dimensional formulation. The hypothesis that at large distances from the tube exit the flowfield is described by the self-similar solution of the parabolized Navier–Stokes equations is confirmed. The asymptotic expansions of the self-similar solution are obtained for small and large values of the coordinate in the jet cross-section. Using the numerical solution the self-similarity exponent is determined. An explicit dependence of the self-similar solution on the Reynolds number and the conditions in the jet source is determined.

2019 ◽  
Vol 29 (12) ◽  
pp. 2271-2320
Author(s):  
Xin Liu ◽  
Yuan Yuan

In this work, we establish a class of globally defined large solutions to the free boundary problem of compressible full Navier–Stokes equations with constant shear viscosity, vanishing bulk viscosity and heat conductivity. We establish such solutions with initial data perturbed around the self-similar solutions when [Formula: see text]. In the case when [Formula: see text], solutions with bounded entropy can be constructed. It should be pointed out that the solutions we obtain in this fashion do not in general keep being a small perturbation of the self-similar solution due to the second law of thermodynamics, i.e. the growth of entropy. If, in addition, in the case when [Formula: see text], we can construct a solution as a global-in-time small perturbation of the self-similar solution and the entropy is uniformly bounded in time. Our result extends the one of Hadžić and Jang [Expanding large global solutions of the equations of compressible fluid mechanics, J. Invent. Math. 214 (2018) 1205.] from the isentropic inviscid case to the non-isentropic viscous case.


2004 ◽  
Vol 47 (1) ◽  
pp. 30-37
Author(s):  
Xinyu He

AbstractLeray's self-similar solution of the Navier-Stokes equations is defined bywhere . Consider the equation for U(y) in a smooth bounded domain D of with non-zero boundary condition:We prove an existence theorem for the Dirichlet problem in Sobolev space W1,2(D). This implies the local existence of a self-similar solution of the Navier-Stokes equations which blows up at t = t* with t* < +∞, provided the function is permissible.


1999 ◽  
Vol 387 ◽  
pp. 227-254 ◽  
Author(s):  
VALOD NOSHADI ◽  
WILHELM SCHNEIDER

Plane and axisymmetric (radial), horizontal laminar jet flows, produced by natural convection on a horizontal finite plate acting as a heat dipole, are considered at large distances from the plate. It is shown that physically acceptable self-similar solutions of the boundary-layer equations, which include buoyancy effects, exist in certain Prandtl-number regimes, i.e. 0.5<Pr[les ]1.470588 for plane, and Pr>1 for axisymmetric flow. In the plane flow case, the eigenvalues of the self-similar solutions are independent of the Prandtl number and can be determined from a momentum balance, whereas in the axisymmetric case the eigenvalues depend on the Prandtl number and are to be determined as part of the solution of the eigenvalue problem. For Prandtl numbers equal to, or smaller than, the lower limiting values of 0.5 and 1 for plane and axisymmetric flow, respectively, the far flow field is a non-buoyant jet, for which self-similar solutions of the boundary-layer equations are also provided. Furthermore it is shown that self-similar solutions of the full Navier–Stokes equations for axisymmetric flow, with the velocity varying as 1/r, exist for arbitrary values of the Prandtl number.Comparisons with finite-element solutions of the full Navier–Stokes equations show that the self-similar boundary-layer solutions are asymptotically approached as the plate Grashof number tends to infinity, whereas the self-similar solution to the full Navier–Stokes equations is applicable, for a given value of the Prandtl number, only to one particular, finite value of the Grashof number.In the Appendices second-order boundary-layer solutions are given, and uniformly valid composite expansions are constructed; asymptotic expansions for large values of the lateral coordinate are performed to study the decay of the self-similar boundary-layer flows; and the stability of the jets is investigated using transient numerical solutions of the Navier–Stokes equations.


2014 ◽  
Vol 740 ◽  
Author(s):  
Mohamed Ali ◽  
Malek Abid

AbstractWe report a self-similar behaviour of solutions (obtained numerically) of the Navier–Stokes equations behind a single-blade rotor. That is, the helical vortex core in the wake of a rotating blade is self-similar as a function of its age. Profiles of vorticity and azimuthal velocity in the vortex core are characterized, their similarity variables are identified and scaling laws of these variables are given. Solutions of incompressible three-dimensional Navier–Stokes equations for Reynolds numbers up to $Re= 2000$ are considered.


Sign in / Sign up

Export Citation Format

Share Document