Self-similar behaviour of a rotor wake vortex core

2014 ◽  
Vol 740 ◽  
Author(s):  
Mohamed Ali ◽  
Malek Abid

AbstractWe report a self-similar behaviour of solutions (obtained numerically) of the Navier–Stokes equations behind a single-blade rotor. That is, the helical vortex core in the wake of a rotating blade is self-similar as a function of its age. Profiles of vorticity and azimuthal velocity in the vortex core are characterized, their similarity variables are identified and scaling laws of these variables are given. Solutions of incompressible three-dimensional Navier–Stokes equations for Reynolds numbers up to $Re= 2000$ are considered.

1976 ◽  
Vol 73 (1) ◽  
pp. 153-164 ◽  
Author(s):  
P.-A. Mackrodt

The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with superimposed rigid rotation against small three-dimensional disturbances is examined at finite and infinite axial Reynolds numbers. The neutral curve, which is obtained by numerical solution of the system of perturbation equations (derived from the Navier-Stokes equations), has been confirmed for finite axial Reynolds numbers by a few simple experiments. The results suggest that, at high axial Reynolds numbers, the amount of rotation required for destabilization could be small enough to have escaped notice in experiments on the transition to turbulence in (nominally) non-rotating pipe flow.


2003 ◽  
pp. 55-82
Author(s):  
M. Despotovic ◽  
Milun Babic ◽  
D. Milovanovic ◽  
Vanja Sustersic

This paper describes a three-dimensional compressible Navier-Stokes code, which has been developed for analysis of turbocompressor blade rows and other internal flows. Despite numerous numerical techniques and statement that Computational Fluid Dynamics has reached state of the art, issues related to successful simulations represent valuable database of how particular tech?nique behave for a specifie problem. This paper deals with rapid numerical method accurate enough to be used as a design tool. The mathematical model is based on System of Favre averaged Navier-Stokes equations that are written in relative frame of reference, which rotates with constant angular velocity around axis of rotation. The governing equations are solved using finite vol?ume method applied on structured grids. The numerical procedure is based on the explicit multistage Runge-Kutta scheme that is coupled with modem numerical procedures for convergence acceleration. To demonstrate the accuracy of the described numer?ical method developed software is applied to numerical analysis of flow through impeller of axial turbocompressor, and obtained results are compared with available experimental data.


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


2013 ◽  
Vol 734 ◽  
pp. 275-316 ◽  
Author(s):  
Rashad Moarref ◽  
Ati S. Sharma ◽  
Joel A. Tropp ◽  
Beverley J. McKeon

AbstractWe study the Reynolds-number scaling and the geometric self-similarity of a gain-based, low-rank approximation to turbulent channel flows, determined by the resolvent formulation of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), in order to obtain a description of the streamwise turbulence intensity from direct consideration of the Navier–Stokes equations. Under this formulation, the velocity field is decomposed into propagating waves (with single streamwise and spanwise wavelengths and wave speed) whose wall-normal shapes are determined from the principal singular function of the corresponding resolvent operator. Using the accepted scalings of the mean velocity in wall-bounded turbulent flows, we establish that the resolvent operator admits three classes of wave parameters that induce universal behaviour with Reynolds number in the low-rank model, and which are consistent with scalings proposed throughout the wall turbulence literature. In addition, it is shown that a necessary condition for geometrically self-similar resolvent modes is the presence of a logarithmic turbulent mean velocity. Under the practical assumption that the mean velocity consists of a logarithmic region, we identify the scalings that constitute hierarchies of self-similar modes that are parameterized by the critical wall-normal location where the speed of the mode equals the local turbulent mean velocity. For the rank-1 model subject to broadband forcing, the integrated streamwise energy density takes a universal form which is consistent with the dominant near-wall turbulent motions. When the shape of the forcing is optimized to enforce matching with results from direct numerical simulations at low turbulent Reynolds numbers, further similarity appears. Representation of these weight functions using similarity laws enables prediction of the Reynolds number and wall-normal variations of the streamwise energy intensity at high Reynolds numbers (${Re}_{\tau } \approx 1{0}^{3} {\unicode{x2013}} 1{0}^{10} $). Results from this low-rank model of the Navier–Stokes equations compare favourably with experimental results in the literature.


2016 ◽  
Vol 799 ◽  
pp. 246-264 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the linear stage of the dynamo instability of a turbulent two-dimensional flow with three components $(u(x,y,t),v(x,y,t),w(x,y,t))$ that is sometimes referred to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional Navier–Stokes equations in the presence of a large-scale drag force that leads to the steady state of a turbulent inverse cascade. These flows provide an approximation to very fast rotating flows often observed in nature. The low dimensionality of the system allows for the realization of a large number of numerical simulations and thus the investigation of a wide range of fluid Reynolds numbers $Re$, magnetic Reynolds numbers $Rm$ and forcing length scales. This allows for the examination of dynamo properties at different limits that cannot be achieved with three-dimensional simulations. We examine dynamos for both large and small magnetic Prandtl-number turbulent flows $Pm=Rm/Re$, close to and away from the dynamo onset, as well as dynamos in the presence of scale separation. In particular, we determine the properties of the dynamo onset as a function of $Re$ and the asymptotic behaviour in the large $Rm$ limit. We are thus able to give a complete description of the dynamo properties of these turbulent 2.5-D flows.


1997 ◽  
Vol 57 (1) ◽  
pp. 195-201 ◽  
Author(s):  
D. O. MARTÍNEZ ◽  
S. CHEN ◽  
G. D. DOOLEN ◽  
R. H. KRAICHNAN ◽  
L.-P. WANG ◽  
...  

High-resolution, direct numerical simulations of three-dimensional incompressible Navier–Stokes equations are carried out to study the energy spectrum in the dissipation range. An energy spectrum of the form A(k/kd)α exp[−βk/kd] is confirmed. The possible values of the parameters α and β, as well as their dependence on Reynolds numbers and length scales, are investigated, showing good agreement with recent theoretical predictions. A ‘bottleneck’-type effect is reported at k/kd≈4, exhibiting a possible transition from near-dissipation to far-dissipation.


2021 ◽  
Vol 56 (6) ◽  
pp. 812-823
Author(s):  
I. I. But ◽  
A. M. Gailfullin ◽  
V. V. Zhvick

Abstract We consider a steady submerged laminar jet of viscous incompressible fluid flowing out of a tube and propagating along a solid plane surface. The numerical solution of Navier–Stokes equations is obtained in the stationary three-dimensional formulation. The hypothesis that at large distances from the tube exit the flowfield is described by the self-similar solution of the parabolized Navier–Stokes equations is confirmed. The asymptotic expansions of the self-similar solution are obtained for small and large values of the coordinate in the jet cross-section. Using the numerical solution the self-similarity exponent is determined. An explicit dependence of the self-similar solution on the Reynolds number and the conditions in the jet source is determined.


1998 ◽  
Vol 120 (1) ◽  
pp. 70-75 ◽  
Author(s):  
K. O. Homan ◽  
S. L. Soo

This paper treats the steady flow of a wall jet into a large-width cavity for which the primary axis is normal to the direction of the jet inflow. Numerical solutions of the two-dimensional Navier-Stokes equations are computed for inlet Reynolds numbers of 10 to 50 and tank width to inlet height ratios of 16 to 128. The length and velocity scales of the wall jet boundary layer exhibit close agreement with the classic wall jet similarity solution and published experimental data but the width of the region for which the comparison proves to be favorable has a limited extent. This departure from a self-similar evolution of the wall jet is shown to result from the finite domain width and its influence on the large recirculation cell located immediately above the wall jet boundary layer.


Sign in / Sign up

Export Citation Format

Share Document